Dynamics of a 4x6-Meter Thin Film Elliptical Inflated Membrane for Space Applications

Dynamic characterization of a thin film inflatable elliptical structure is described in detail. A two-step finite element modeling approach in MSC/NASTRAN is utilized, consisting of (1) a nonlinear static pressurization procedure used to obtain the updated stiffness matrix, and (2) a modal "res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Casiano, Matthew J., Hamidzadeh, Hamid R., Tinker, Michael L., McConnaughey, Paul R.
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Casiano, Matthew J.
Hamidzadeh, Hamid R.
Tinker, Michael L.
McConnaughey, Paul R.
description Dynamic characterization of a thin film inflatable elliptical structure is described in detail. A two-step finite element modeling approach in MSC/NASTRAN is utilized, consisting of (1) a nonlinear static pressurization procedure used to obtain the updated stiffness matrix, and (2) a modal "restart" eigen solution that uses the modified stiffness matrix. Unique problems encountered in modeling of this large Hexameter lightweight inflatable arc identified, including considerable difficulty in obtaining convergence in the nonlinear finite element pressurization solution. It was found that the extremely thin polyimide film material (.001 in or 1 mil) presents tremendous problems in obtaining a converged solution when internal pressure loading is applied. Approaches utilized to overcome these difficulties are described. Comparison of finite element predictions for frequency and mode shapes of the inflated structure with closed-form solutions for a flat pre-tensioned membrane indicate reasonable agreement.
format Report
fullrecord <record><control><sourceid>nasa_CYI</sourceid><recordid>TN_cdi_nasa_ntrs_20030002752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20030002752</sourcerecordid><originalsourceid>FETCH-nasa_ntrs_200300027523</originalsourceid><addsrcrecordid>eNqFyj0OwjAMQOEsDAi4AYMvUClK-ZkRtIKhE2WuTHBEJMeJkgxwexjYmd7wvbm6nd6CwdsC0QHC5rVrBqqUYXx6gd5zgI7Zp-otMlzEMVZ6wEDhnlEIXMxwTWgJDinxd6o-SlmqmUMutPp1odZ9Nx7PjWDBSWouk9G61Vqb_da0f_gDpO4zdA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Dynamics of a 4x6-Meter Thin Film Elliptical Inflated Membrane for Space Applications</title><source>NASA Technical Reports Server</source><creator>Casiano, Matthew J. ; Hamidzadeh, Hamid R. ; Tinker, Michael L. ; McConnaughey, Paul R.</creator><creatorcontrib>Casiano, Matthew J. ; Hamidzadeh, Hamid R. ; Tinker, Michael L. ; McConnaughey, Paul R.</creatorcontrib><description>Dynamic characterization of a thin film inflatable elliptical structure is described in detail. A two-step finite element modeling approach in MSC/NASTRAN is utilized, consisting of (1) a nonlinear static pressurization procedure used to obtain the updated stiffness matrix, and (2) a modal "restart" eigen solution that uses the modified stiffness matrix. Unique problems encountered in modeling of this large Hexameter lightweight inflatable arc identified, including considerable difficulty in obtaining convergence in the nonlinear finite element pressurization solution. It was found that the extremely thin polyimide film material (.001 in or 1 mil) presents tremendous problems in obtaining a converged solution when internal pressure loading is applied. Approaches utilized to overcome these difficulties are described. Comparison of finite element predictions for frequency and mode shapes of the inflated structure with closed-form solutions for a flat pre-tensioned membrane indicate reasonable agreement.</description><language>eng</language><publisher>Marshall Space Flight Center</publisher><subject>Mechanical Engineering</subject><creationdate>2002</creationdate><rights>Copyright Determination: PUBLIC_USE_PERMITTED</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,796,4475</link.rule.ids><linktorsrc>$$Uhttps://ntrs.nasa.gov/citations/20030002752$$EView_record_in_NASA$$FView_record_in_$$GNASA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Casiano, Matthew J.</creatorcontrib><creatorcontrib>Hamidzadeh, Hamid R.</creatorcontrib><creatorcontrib>Tinker, Michael L.</creatorcontrib><creatorcontrib>McConnaughey, Paul R.</creatorcontrib><title>Dynamics of a 4x6-Meter Thin Film Elliptical Inflated Membrane for Space Applications</title><description>Dynamic characterization of a thin film inflatable elliptical structure is described in detail. A two-step finite element modeling approach in MSC/NASTRAN is utilized, consisting of (1) a nonlinear static pressurization procedure used to obtain the updated stiffness matrix, and (2) a modal "restart" eigen solution that uses the modified stiffness matrix. Unique problems encountered in modeling of this large Hexameter lightweight inflatable arc identified, including considerable difficulty in obtaining convergence in the nonlinear finite element pressurization solution. It was found that the extremely thin polyimide film material (.001 in or 1 mil) presents tremendous problems in obtaining a converged solution when internal pressure loading is applied. Approaches utilized to overcome these difficulties are described. Comparison of finite element predictions for frequency and mode shapes of the inflated structure with closed-form solutions for a flat pre-tensioned membrane indicate reasonable agreement.</description><subject>Mechanical Engineering</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>2002</creationdate><recordtype>report</recordtype><sourceid>CYI</sourceid><recordid>eNqFyj0OwjAMQOEsDAi4AYMvUClK-ZkRtIKhE2WuTHBEJMeJkgxwexjYmd7wvbm6nd6CwdsC0QHC5rVrBqqUYXx6gd5zgI7Zp-otMlzEMVZ6wEDhnlEIXMxwTWgJDinxd6o-SlmqmUMutPp1odZ9Nx7PjWDBSWouk9G61Vqb_da0f_gDpO4zdA</recordid><startdate>20020101</startdate><enddate>20020101</enddate><creator>Casiano, Matthew J.</creator><creator>Hamidzadeh, Hamid R.</creator><creator>Tinker, Michael L.</creator><creator>McConnaughey, Paul R.</creator><scope>CYE</scope><scope>CYI</scope></search><sort><creationdate>20020101</creationdate><title>Dynamics of a 4x6-Meter Thin Film Elliptical Inflated Membrane for Space Applications</title><author>Casiano, Matthew J. ; Hamidzadeh, Hamid R. ; Tinker, Michael L. ; McConnaughey, Paul R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-nasa_ntrs_200300027523</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Mechanical Engineering</topic><toplevel>online_resources</toplevel><creatorcontrib>Casiano, Matthew J.</creatorcontrib><creatorcontrib>Hamidzadeh, Hamid R.</creatorcontrib><creatorcontrib>Tinker, Michael L.</creatorcontrib><creatorcontrib>McConnaughey, Paul R.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Casiano, Matthew J.</au><au>Hamidzadeh, Hamid R.</au><au>Tinker, Michael L.</au><au>McConnaughey, Paul R.</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Dynamics of a 4x6-Meter Thin Film Elliptical Inflated Membrane for Space Applications</btitle><date>2002-01-01</date><risdate>2002</risdate><abstract>Dynamic characterization of a thin film inflatable elliptical structure is described in detail. A two-step finite element modeling approach in MSC/NASTRAN is utilized, consisting of (1) a nonlinear static pressurization procedure used to obtain the updated stiffness matrix, and (2) a modal "restart" eigen solution that uses the modified stiffness matrix. Unique problems encountered in modeling of this large Hexameter lightweight inflatable arc identified, including considerable difficulty in obtaining convergence in the nonlinear finite element pressurization solution. It was found that the extremely thin polyimide film material (.001 in or 1 mil) presents tremendous problems in obtaining a converged solution when internal pressure loading is applied. Approaches utilized to overcome these difficulties are described. Comparison of finite element predictions for frequency and mode shapes of the inflated structure with closed-form solutions for a flat pre-tensioned membrane indicate reasonable agreement.</abstract><cop>Marshall Space Flight Center</cop><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_nasa_ntrs_20030002752
source NASA Technical Reports Server
subjects Mechanical Engineering
title Dynamics of a 4x6-Meter Thin Film Elliptical Inflated Membrane for Space Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_CYI&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Dynamics%20of%20a%204x6-Meter%20Thin%20Film%20Elliptical%20Inflated%20Membrane%20for%20Space%20Applications&rft.au=Casiano,%20Matthew%20J.&rft.date=2002-01-01&rft_id=info:doi/&rft_dat=%3Cnasa_CYI%3E20030002752%3C/nasa_CYI%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true