Fracture Probability of MEMS Optical Devices for Space Flight Applications

A bending fracture test specimen design is presented for thin elements used in optical devices for space flight applications. The specimen design is insensitive to load position, avoids end effect complications, and can be used to measure strength of membranes less than 2 microns thick. The theoreti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fettig, Rainer K., Kuhn, Jonathan L., Moseley, S. Harvey, Kutyrev, Alexander S., Orloff, Jon
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume
creator Fettig, Rainer K.
Kuhn, Jonathan L.
Moseley, S. Harvey
Kutyrev, Alexander S.
Orloff, Jon
description A bending fracture test specimen design is presented for thin elements used in optical devices for space flight applications. The specimen design is insensitive to load position, avoids end effect complications, and can be used to measure strength of membranes less than 2 microns thick. The theoretical equations predicting stress at failure are presented, and a detailed finite element model is developed to validate the equations for this application. An experimental procedure using a focused ion beam machine is outlined, and results from preliminary tests of 1.9 microns thick single crystal silicon are presented. These tests are placed in the context of a methodology for the design and evaluation of mission critical devices comprised of large arrays of cells.
format Report
fullrecord <record><control><sourceid>nasa_CYI</sourceid><recordid>TN_cdi_nasa_ntrs_20000064062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20000064062</sourcerecordid><originalsourceid>FETCH-nasa_ntrs_200000640623</originalsourceid><addsrcrecordid>eNrjZPByK0pMLiktSlUIKMpPSkzKzMksqVTIT1PwdfUNVvAvKMlMTsxRcEkty0xOLVZIyy9SCC5ITE5VcMvJTM8oUXAsKMgBqijJzM8r5mFgTUvMKU7lhdLcDDJuriHOHrp5icWJ8XklRcXxRgYgYGZiYGZkTEAaAH1YL_I</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>report</recordtype></control><display><type>report</type><title>Fracture Probability of MEMS Optical Devices for Space Flight Applications</title><source>NASA Technical Reports Server</source><creator>Fettig, Rainer K. ; Kuhn, Jonathan L. ; Moseley, S. Harvey ; Kutyrev, Alexander S. ; Orloff, Jon</creator><creatorcontrib>Fettig, Rainer K. ; Kuhn, Jonathan L. ; Moseley, S. Harvey ; Kutyrev, Alexander S. ; Orloff, Jon</creatorcontrib><description>A bending fracture test specimen design is presented for thin elements used in optical devices for space flight applications. The specimen design is insensitive to load position, avoids end effect complications, and can be used to measure strength of membranes less than 2 microns thick. The theoretical equations predicting stress at failure are presented, and a detailed finite element model is developed to validate the equations for this application. An experimental procedure using a focused ion beam machine is outlined, and results from preliminary tests of 1.9 microns thick single crystal silicon are presented. These tests are placed in the context of a methodology for the design and evaluation of mission critical devices comprised of large arrays of cells.</description><language>eng</language><publisher>Goddard Space Flight Center</publisher><subject>Optics</subject><creationdate>1999</creationdate><rights>Copyright Determination: GOV_PUBLIC_USE_PERMITTED</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,800,4490</link.rule.ids><linktorsrc>$$Uhttps://ntrs.nasa.gov/citations/20000064062$$EView_record_in_NASA$$FView_record_in_$$GNASA$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Fettig, Rainer K.</creatorcontrib><creatorcontrib>Kuhn, Jonathan L.</creatorcontrib><creatorcontrib>Moseley, S. Harvey</creatorcontrib><creatorcontrib>Kutyrev, Alexander S.</creatorcontrib><creatorcontrib>Orloff, Jon</creatorcontrib><title>Fracture Probability of MEMS Optical Devices for Space Flight Applications</title><description>A bending fracture test specimen design is presented for thin elements used in optical devices for space flight applications. The specimen design is insensitive to load position, avoids end effect complications, and can be used to measure strength of membranes less than 2 microns thick. The theoretical equations predicting stress at failure are presented, and a detailed finite element model is developed to validate the equations for this application. An experimental procedure using a focused ion beam machine is outlined, and results from preliminary tests of 1.9 microns thick single crystal silicon are presented. These tests are placed in the context of a methodology for the design and evaluation of mission critical devices comprised of large arrays of cells.</description><subject>Optics</subject><fulltext>true</fulltext><rsrctype>report</rsrctype><creationdate>1999</creationdate><recordtype>report</recordtype><sourceid>CYI</sourceid><recordid>eNrjZPByK0pMLiktSlUIKMpPSkzKzMksqVTIT1PwdfUNVvAvKMlMTsxRcEkty0xOLVZIyy9SCC5ITE5VcMvJTM8oUXAsKMgBqijJzM8r5mFgTUvMKU7lhdLcDDJuriHOHrp5icWJ8XklRcXxRgYgYGZiYGZkTEAaAH1YL_I</recordid><startdate>19990714</startdate><enddate>19990714</enddate><creator>Fettig, Rainer K.</creator><creator>Kuhn, Jonathan L.</creator><creator>Moseley, S. Harvey</creator><creator>Kutyrev, Alexander S.</creator><creator>Orloff, Jon</creator><scope>CYE</scope><scope>CYI</scope></search><sort><creationdate>19990714</creationdate><title>Fracture Probability of MEMS Optical Devices for Space Flight Applications</title><author>Fettig, Rainer K. ; Kuhn, Jonathan L. ; Moseley, S. Harvey ; Kutyrev, Alexander S. ; Orloff, Jon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-nasa_ntrs_200000640623</frbrgroupid><rsrctype>reports</rsrctype><prefilter>reports</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Optics</topic><toplevel>online_resources</toplevel><creatorcontrib>Fettig, Rainer K.</creatorcontrib><creatorcontrib>Kuhn, Jonathan L.</creatorcontrib><creatorcontrib>Moseley, S. Harvey</creatorcontrib><creatorcontrib>Kutyrev, Alexander S.</creatorcontrib><creatorcontrib>Orloff, Jon</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fettig, Rainer K.</au><au>Kuhn, Jonathan L.</au><au>Moseley, S. Harvey</au><au>Kutyrev, Alexander S.</au><au>Orloff, Jon</au><format>book</format><genre>unknown</genre><ristype>RPRT</ristype><btitle>Fracture Probability of MEMS Optical Devices for Space Flight Applications</btitle><date>1999-07-14</date><risdate>1999</risdate><abstract>A bending fracture test specimen design is presented for thin elements used in optical devices for space flight applications. The specimen design is insensitive to load position, avoids end effect complications, and can be used to measure strength of membranes less than 2 microns thick. The theoretical equations predicting stress at failure are presented, and a detailed finite element model is developed to validate the equations for this application. An experimental procedure using a focused ion beam machine is outlined, and results from preliminary tests of 1.9 microns thick single crystal silicon are presented. These tests are placed in the context of a methodology for the design and evaluation of mission critical devices comprised of large arrays of cells.</abstract><cop>Goddard Space Flight Center</cop><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier
ispartof
issn
language eng
recordid cdi_nasa_ntrs_20000064062
source NASA Technical Reports Server
subjects Optics
title Fracture Probability of MEMS Optical Devices for Space Flight Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-nasa_CYI&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=unknown&rft.btitle=Fracture%20Probability%20of%20MEMS%20Optical%20Devices%20for%20Space%20Flight%20Applications&rft.au=Fettig,%20Rainer%20K.&rft.date=1999-07-14&rft_id=info:doi/&rft_dat=%3Cnasa_CYI%3E20000064062%3C/nasa_CYI%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true