Nonparametric test for connectivity detection in multivariate autoregressive networks and application to multiunit activity data
Directed connectivity inference has become a cornerstone in neuroscience to analyze multivariate data from neuroimaging and electrophysiological techniques. Here we propose a nonparametric significance method to test the nonzero values of multivariate autoregressive model to infer interactions in re...
Gespeichert in:
Veröffentlicht in: | Network neuroscience (Cambridge, Mass.) Mass.), 2017-12, Vol.1 (4), p.357-380 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 380 |
---|---|
container_issue | 4 |
container_start_page | 357 |
container_title | Network neuroscience (Cambridge, Mass.) |
container_volume | 1 |
creator | Gilson, M. Tauste Campo, A. Chen, X. Thiele, A. Deco, G. |
description | Directed connectivity inference has become a cornerstone in neuroscience to analyze multivariate data from neuroimaging and electrophysiological techniques. Here we propose a nonparametric significance method to test the nonzero values of multivariate autoregressive model to infer interactions in recurrent networks. We use random permutations or circular shifts of the original time series to generate the null-hypothesis distributions. The underlying network model is the same as used in multivariate Granger causality, but our test relies on the autoregressive coefficients instead of error residuals. By means of numerical simulation over multiple network configurations, we show that this method achieves a good control of false positives (type 1 error) and detects existing pairwise connections more accurately than using the standard parametric test for the ratio of error residuals. In practice, our method aims to detect temporal interactions in real neuronal networks with nodes possibly exhibiting redundant activity. As a proof of concept, we apply our method to multiunit activity (MUA) recorded from Utah electrode arrays in a monkey and examine detected interactions between 25 channels. We show that during stimulus presentation our method detects a large number of interactions that cannot be solely explained by the increase in the MUA level. |
doi_str_mv | 10.1162/NETN_a_00019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_mit_j</sourceid><recordid>TN_cdi_mit_journals_10_1162_NETN_a_00019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f51afa0bcf1942f48df2907f761d134c</doaj_id><sourcerecordid>2890479586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c752t-72a1f691a2d5fb634718d0364c1095d1785ba8c69e9a1e182516faace482896a3</originalsourceid><addsrcrecordid>eNp1ks1v1DAQxSMEolXpjTOKxAUkFjyO448LVVUVWmlVLuVszTrO1ktiL46zqJz40_F-sGwrOESxx7_3Mhm_ongJ5D0Apx9uLm9vNGpCCKgnxTFlgk5A1PD0YH1UnA7DIiMUKBAmnxdHFSGKSAHHxa-b4JcYsbcpOlMmO6SyDbE0wXtrklu5dF82Nq3XwZfOl_3Y5TJGh8mWOKYQ7TzaYXArW3qbfoT4bSjRNyUul50zuNGlsNWN3qUS976Y8EXxrMVusKe790nx9dPl7cXVZPrl8_XF-XRiRE3TRFCElitA2tTtjFdMgGxIxZkBouoGhKxnKA1XViFYkLQG3iIayySVimN1UlxvfZuAC72Mrsd4rwM6vSmEONcYkzOd1W0N2CKZmRYUoy2TTUsVEa3g0EDFTPb6uPVajrPeNsb6FLF7YPrwxLs7PQ8rzQmvBKhs8HZrcPdIdnU-1esaYYwpBdUKMgtb1gyj0dEaG_NQN_R-s34oEVRXORRSZs2bXYMxfB_znereDcZ2HXobxiGzktM6D0lk9PUjdBHG6PNV6Dw4woSqJc_Uu10TMQxDtO2-ayB6nUR9mMSMvzoc0B7-k7u_Dfbu4IP_8Tr7B5qT5lfgWLYEzln-IwpZrInUP91yc7x3-A2anf0R</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890479586</pqid></control><display><type>article</type><title>Nonparametric test for connectivity detection in multivariate autoregressive networks and application to multiunit activity data</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Recercat</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>PubMed Central</source><source>ProQuest Central</source><creator>Gilson, M. ; Tauste Campo, A. ; Chen, X. ; Thiele, A. ; Deco, G.</creator><creatorcontrib>Gilson, M. ; Tauste Campo, A. ; Chen, X. ; Thiele, A. ; Deco, G.</creatorcontrib><description>Directed connectivity inference has become a cornerstone in neuroscience to analyze multivariate data from neuroimaging and electrophysiological techniques. Here we propose a nonparametric significance method to test the nonzero values of multivariate autoregressive model to infer interactions in recurrent networks. We use random permutations or circular shifts of the original time series to generate the null-hypothesis distributions. The underlying network model is the same as used in multivariate Granger causality, but our test relies on the autoregressive coefficients instead of error residuals. By means of numerical simulation over multiple network configurations, we show that this method achieves a good control of false positives (type 1 error) and detects existing pairwise connections more accurately than using the standard parametric test for the ratio of error residuals. In practice, our method aims to detect temporal interactions in real neuronal networks with nodes possibly exhibiting redundant activity. As a proof of concept, we apply our method to multiunit activity (MUA) recorded from Utah electrode arrays in a monkey and examine detected interactions between 25 channels. We show that during stimulus presentation our method detects a large number of interactions that cannot be solely explained by the increase in the MUA level.</description><identifier>ISSN: 2472-1751</identifier><identifier>EISSN: 2472-1751</identifier><identifier>DOI: 10.1162/NETN_a_00019</identifier><identifier>PMID: 30090871</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Autoregressive models ; Causality ; Error detection ; Granger causality ; Humanities and Social Sciences ; Influence ; Life Sciences ; Mathematical models ; Medical imaging ; METHODS ; Methods and statistics ; Multiunit activity ; Multivariate analysis ; Multivariate autoregressive process ; Network connectivity detection ; Neural networks ; Neuroimaging ; Neurons and Cognition ; Neurosciences ; Nonparametric significance method ; Nonparametric statistics ; Permutations ; Time series</subject><ispartof>Network neuroscience (Cambridge, Mass.), 2017-12, Vol.1 (4), p.357-380</ispartof><rights>2017. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess © 2017 Massachusetts Institute of Technology Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. Publisher version at <a href="http://mitpress.mit.edu">http://mitpress.mit.edu</a> <a href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</a></rights><rights>Attribution</rights><rights>2017 Massachusetts Institute of Technology 2017 Massachusetts Institute of Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c752t-72a1f691a2d5fb634718d0364c1095d1785ba8c69e9a1e182516faace482896a3</citedby><cites>FETCH-LOGICAL-c752t-72a1f691a2d5fb634718d0364c1095d1785ba8c69e9a1e182516faace482896a3</cites><orcidid>0000-0002-6726-7207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063719/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2890479586?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,21393,26979,27929,27930,33749,33750,43810,53796,53798,64390,64392,64394,72474</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30090871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://amu.hal.science/hal-04449913$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilson, M.</creatorcontrib><creatorcontrib>Tauste Campo, A.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Thiele, A.</creatorcontrib><creatorcontrib>Deco, G.</creatorcontrib><title>Nonparametric test for connectivity detection in multivariate autoregressive networks and application to multiunit activity data</title><title>Network neuroscience (Cambridge, Mass.)</title><addtitle>Netw Neurosci</addtitle><description>Directed connectivity inference has become a cornerstone in neuroscience to analyze multivariate data from neuroimaging and electrophysiological techniques. Here we propose a nonparametric significance method to test the nonzero values of multivariate autoregressive model to infer interactions in recurrent networks. We use random permutations or circular shifts of the original time series to generate the null-hypothesis distributions. The underlying network model is the same as used in multivariate Granger causality, but our test relies on the autoregressive coefficients instead of error residuals. By means of numerical simulation over multiple network configurations, we show that this method achieves a good control of false positives (type 1 error) and detects existing pairwise connections more accurately than using the standard parametric test for the ratio of error residuals. In practice, our method aims to detect temporal interactions in real neuronal networks with nodes possibly exhibiting redundant activity. As a proof of concept, we apply our method to multiunit activity (MUA) recorded from Utah electrode arrays in a monkey and examine detected interactions between 25 channels. We show that during stimulus presentation our method detects a large number of interactions that cannot be solely explained by the increase in the MUA level.</description><subject>Autoregressive models</subject><subject>Causality</subject><subject>Error detection</subject><subject>Granger causality</subject><subject>Humanities and Social Sciences</subject><subject>Influence</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>METHODS</subject><subject>Methods and statistics</subject><subject>Multiunit activity</subject><subject>Multivariate analysis</subject><subject>Multivariate autoregressive process</subject><subject>Network connectivity detection</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neurons and Cognition</subject><subject>Neurosciences</subject><subject>Nonparametric significance method</subject><subject>Nonparametric statistics</subject><subject>Permutations</subject><subject>Time series</subject><issn>2472-1751</issn><issn>2472-1751</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>XX2</sourceid><sourceid>DOA</sourceid><recordid>eNp1ks1v1DAQxSMEolXpjTOKxAUkFjyO448LVVUVWmlVLuVszTrO1ktiL46zqJz40_F-sGwrOESxx7_3Mhm_ongJ5D0Apx9uLm9vNGpCCKgnxTFlgk5A1PD0YH1UnA7DIiMUKBAmnxdHFSGKSAHHxa-b4JcYsbcpOlMmO6SyDbE0wXtrklu5dF82Nq3XwZfOl_3Y5TJGh8mWOKYQ7TzaYXArW3qbfoT4bSjRNyUul50zuNGlsNWN3qUS976Y8EXxrMVusKe790nx9dPl7cXVZPrl8_XF-XRiRE3TRFCElitA2tTtjFdMgGxIxZkBouoGhKxnKA1XViFYkLQG3iIayySVimN1UlxvfZuAC72Mrsd4rwM6vSmEONcYkzOd1W0N2CKZmRYUoy2TTUsVEa3g0EDFTPb6uPVajrPeNsb6FLF7YPrwxLs7PQ8rzQmvBKhs8HZrcPdIdnU-1esaYYwpBdUKMgtb1gyj0dEaG_NQN_R-s34oEVRXORRSZs2bXYMxfB_znereDcZ2HXobxiGzktM6D0lk9PUjdBHG6PNV6Dw4woSqJc_Uu10TMQxDtO2-ayB6nUR9mMSMvzoc0B7-k7u_Dfbu4IP_8Tr7B5qT5lfgWLYEzln-IwpZrInUP91yc7x3-A2anf0R</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Gilson, M.</creator><creator>Tauste Campo, A.</creator><creator>Chen, X.</creator><creator>Thiele, A.</creator><creator>Deco, G.</creator><general>MIT Press</general><general>MIT Press Journals, The</general><general>The MIT Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>LK8</scope><scope>M7P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>XX2</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6726-7207</orcidid></search><sort><creationdate>20171201</creationdate><title>Nonparametric test for connectivity detection in multivariate autoregressive networks and application to multiunit activity data</title><author>Gilson, M. ; Tauste Campo, A. ; Chen, X. ; Thiele, A. ; Deco, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c752t-72a1f691a2d5fb634718d0364c1095d1785ba8c69e9a1e182516faace482896a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Autoregressive models</topic><topic>Causality</topic><topic>Error detection</topic><topic>Granger causality</topic><topic>Humanities and Social Sciences</topic><topic>Influence</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>METHODS</topic><topic>Methods and statistics</topic><topic>Multiunit activity</topic><topic>Multivariate analysis</topic><topic>Multivariate autoregressive process</topic><topic>Network connectivity detection</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neurons and Cognition</topic><topic>Neurosciences</topic><topic>Nonparametric significance method</topic><topic>Nonparametric statistics</topic><topic>Permutations</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilson, M.</creatorcontrib><creatorcontrib>Tauste Campo, A.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Thiele, A.</creatorcontrib><creatorcontrib>Deco, G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Network neuroscience (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilson, M.</au><au>Tauste Campo, A.</au><au>Chen, X.</au><au>Thiele, A.</au><au>Deco, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric test for connectivity detection in multivariate autoregressive networks and application to multiunit activity data</atitle><jtitle>Network neuroscience (Cambridge, Mass.)</jtitle><addtitle>Netw Neurosci</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>1</volume><issue>4</issue><spage>357</spage><epage>380</epage><pages>357-380</pages><issn>2472-1751</issn><eissn>2472-1751</eissn><abstract>Directed connectivity inference has become a cornerstone in neuroscience to analyze multivariate data from neuroimaging and electrophysiological techniques. Here we propose a nonparametric significance method to test the nonzero values of multivariate autoregressive model to infer interactions in recurrent networks. We use random permutations or circular shifts of the original time series to generate the null-hypothesis distributions. The underlying network model is the same as used in multivariate Granger causality, but our test relies on the autoregressive coefficients instead of error residuals. By means of numerical simulation over multiple network configurations, we show that this method achieves a good control of false positives (type 1 error) and detects existing pairwise connections more accurately than using the standard parametric test for the ratio of error residuals. In practice, our method aims to detect temporal interactions in real neuronal networks with nodes possibly exhibiting redundant activity. As a proof of concept, we apply our method to multiunit activity (MUA) recorded from Utah electrode arrays in a monkey and examine detected interactions between 25 channels. We show that during stimulus presentation our method detects a large number of interactions that cannot be solely explained by the increase in the MUA level.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>30090871</pmid><doi>10.1162/NETN_a_00019</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-6726-7207</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2472-1751 |
ispartof | Network neuroscience (Cambridge, Mass.), 2017-12, Vol.1 (4), p.357-380 |
issn | 2472-1751 2472-1751 |
language | eng |
recordid | cdi_mit_journals_10_1162_NETN_a_00019 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; Recercat; EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; PubMed Central; ProQuest Central |
subjects | Autoregressive models Causality Error detection Granger causality Humanities and Social Sciences Influence Life Sciences Mathematical models Medical imaging METHODS Methods and statistics Multiunit activity Multivariate analysis Multivariate autoregressive process Network connectivity detection Neural networks Neuroimaging Neurons and Cognition Neurosciences Nonparametric significance method Nonparametric statistics Permutations Time series |
title | Nonparametric test for connectivity detection in multivariate autoregressive networks and application to multiunit activity data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_mit_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20test%20for%20connectivity%20detection%20in%20multivariate%20autoregressive%20networks%20and%20application%20to%20multiunit%20activity%20data&rft.jtitle=Network%20neuroscience%20(Cambridge,%20Mass.)&rft.au=Gilson,%20M.&rft.date=2017-12-01&rft.volume=1&rft.issue=4&rft.spage=357&rft.epage=380&rft.pages=357-380&rft.issn=2472-1751&rft.eissn=2472-1751&rft_id=info:doi/10.1162/NETN_a_00019&rft_dat=%3Cproquest_mit_j%3E2890479586%3C/proquest_mit_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890479586&rft_id=info:pmid/30090871&rft_doaj_id=oai_doaj_org_article_f51afa0bcf1942f48df2907f761d134c&rfr_iscdi=true |