Nonparametric test for connectivity detection in multivariate autoregressive networks and application to multiunit activity data

Directed connectivity inference has become a cornerstone in neuroscience to analyze multivariate data from neuroimaging and electrophysiological techniques. Here we propose a nonparametric significance method to test the nonzero values of multivariate autoregressive model to infer interactions in re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Network neuroscience (Cambridge, Mass.) Mass.), 2017-12, Vol.1 (4), p.357-380
Hauptverfasser: Gilson, M., Tauste Campo, A., Chen, X., Thiele, A., Deco, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 380
container_issue 4
container_start_page 357
container_title Network neuroscience (Cambridge, Mass.)
container_volume 1
creator Gilson, M.
Tauste Campo, A.
Chen, X.
Thiele, A.
Deco, G.
description Directed connectivity inference has become a cornerstone in neuroscience to analyze multivariate data from neuroimaging and electrophysiological techniques. Here we propose a nonparametric significance method to test the nonzero values of multivariate autoregressive model to infer interactions in recurrent networks. We use random permutations or circular shifts of the original time series to generate the null-hypothesis distributions. The underlying network model is the same as used in multivariate Granger causality, but our test relies on the autoregressive coefficients instead of error residuals. By means of numerical simulation over multiple network configurations, we show that this method achieves a good control of false positives (type 1 error) and detects existing pairwise connections more accurately than using the standard parametric test for the ratio of error residuals. In practice, our method aims to detect temporal interactions in real neuronal networks with nodes possibly exhibiting redundant activity. As a proof of concept, we apply our method to multiunit activity (MUA) recorded from Utah electrode arrays in a monkey and examine detected interactions between 25 channels. We show that during stimulus presentation our method detects a large number of interactions that cannot be solely explained by the increase in the MUA level.
doi_str_mv 10.1162/NETN_a_00019
format Article
fullrecord <record><control><sourceid>proquest_mit_j</sourceid><recordid>TN_cdi_mit_journals_10_1162_NETN_a_00019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f51afa0bcf1942f48df2907f761d134c</doaj_id><sourcerecordid>2890479586</sourcerecordid><originalsourceid>FETCH-LOGICAL-c752t-72a1f691a2d5fb634718d0364c1095d1785ba8c69e9a1e182516faace482896a3</originalsourceid><addsrcrecordid>eNp1ks1v1DAQxSMEolXpjTOKxAUkFjyO448LVVUVWmlVLuVszTrO1ktiL46zqJz40_F-sGwrOESxx7_3Mhm_ongJ5D0Apx9uLm9vNGpCCKgnxTFlgk5A1PD0YH1UnA7DIiMUKBAmnxdHFSGKSAHHxa-b4JcYsbcpOlMmO6SyDbE0wXtrklu5dF82Nq3XwZfOl_3Y5TJGh8mWOKYQ7TzaYXArW3qbfoT4bSjRNyUul50zuNGlsNWN3qUS976Y8EXxrMVusKe790nx9dPl7cXVZPrl8_XF-XRiRE3TRFCElitA2tTtjFdMgGxIxZkBouoGhKxnKA1XViFYkLQG3iIayySVimN1UlxvfZuAC72Mrsd4rwM6vSmEONcYkzOd1W0N2CKZmRYUoy2TTUsVEa3g0EDFTPb6uPVajrPeNsb6FLF7YPrwxLs7PQ8rzQmvBKhs8HZrcPdIdnU-1esaYYwpBdUKMgtb1gyj0dEaG_NQN_R-s34oEVRXORRSZs2bXYMxfB_znereDcZ2HXobxiGzktM6D0lk9PUjdBHG6PNV6Dw4woSqJc_Uu10TMQxDtO2-ayB6nUR9mMSMvzoc0B7-k7u_Dfbu4IP_8Tr7B5qT5lfgWLYEzln-IwpZrInUP91yc7x3-A2anf0R</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2890479586</pqid></control><display><type>article</type><title>Nonparametric test for connectivity detection in multivariate autoregressive networks and application to multiunit activity data</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Recercat</source><source>EZB-FREE-00999 freely available EZB journals</source><source>ProQuest Central UK/Ireland</source><source>PubMed Central</source><source>ProQuest Central</source><creator>Gilson, M. ; Tauste Campo, A. ; Chen, X. ; Thiele, A. ; Deco, G.</creator><creatorcontrib>Gilson, M. ; Tauste Campo, A. ; Chen, X. ; Thiele, A. ; Deco, G.</creatorcontrib><description>Directed connectivity inference has become a cornerstone in neuroscience to analyze multivariate data from neuroimaging and electrophysiological techniques. Here we propose a nonparametric significance method to test the nonzero values of multivariate autoregressive model to infer interactions in recurrent networks. We use random permutations or circular shifts of the original time series to generate the null-hypothesis distributions. The underlying network model is the same as used in multivariate Granger causality, but our test relies on the autoregressive coefficients instead of error residuals. By means of numerical simulation over multiple network configurations, we show that this method achieves a good control of false positives (type 1 error) and detects existing pairwise connections more accurately than using the standard parametric test for the ratio of error residuals. In practice, our method aims to detect temporal interactions in real neuronal networks with nodes possibly exhibiting redundant activity. As a proof of concept, we apply our method to multiunit activity (MUA) recorded from Utah electrode arrays in a monkey and examine detected interactions between 25 channels. We show that during stimulus presentation our method detects a large number of interactions that cannot be solely explained by the increase in the MUA level.</description><identifier>ISSN: 2472-1751</identifier><identifier>EISSN: 2472-1751</identifier><identifier>DOI: 10.1162/NETN_a_00019</identifier><identifier>PMID: 30090871</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Autoregressive models ; Causality ; Error detection ; Granger causality ; Humanities and Social Sciences ; Influence ; Life Sciences ; Mathematical models ; Medical imaging ; METHODS ; Methods and statistics ; Multiunit activity ; Multivariate analysis ; Multivariate autoregressive process ; Network connectivity detection ; Neural networks ; Neuroimaging ; Neurons and Cognition ; Neurosciences ; Nonparametric significance method ; Nonparametric statistics ; Permutations ; Time series</subject><ispartof>Network neuroscience (Cambridge, Mass.), 2017-12, Vol.1 (4), p.357-380</ispartof><rights>2017. This work is published under https://creativecommons.org/licenses/by/4.0/legalcode (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>info:eu-repo/semantics/openAccess © 2017 Massachusetts Institute of Technology Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) license. Publisher version at &lt;a href="http://mitpress.mit.edu"&gt;http://mitpress.mit.edu&lt;/a&gt; &lt;a href="http://creativecommons.org/licenses/by/4.0/"&gt;http://creativecommons.org/licenses/by/4.0/&lt;/a&gt;</rights><rights>Attribution</rights><rights>2017 Massachusetts Institute of Technology 2017 Massachusetts Institute of Technology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c752t-72a1f691a2d5fb634718d0364c1095d1785ba8c69e9a1e182516faace482896a3</citedby><cites>FETCH-LOGICAL-c752t-72a1f691a2d5fb634718d0364c1095d1785ba8c69e9a1e182516faace482896a3</cites><orcidid>0000-0002-6726-7207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6063719/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2890479586?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,21393,26979,27929,27930,33749,33750,43810,53796,53798,64390,64392,64394,72474</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30090871$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://amu.hal.science/hal-04449913$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gilson, M.</creatorcontrib><creatorcontrib>Tauste Campo, A.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Thiele, A.</creatorcontrib><creatorcontrib>Deco, G.</creatorcontrib><title>Nonparametric test for connectivity detection in multivariate autoregressive networks and application to multiunit activity data</title><title>Network neuroscience (Cambridge, Mass.)</title><addtitle>Netw Neurosci</addtitle><description>Directed connectivity inference has become a cornerstone in neuroscience to analyze multivariate data from neuroimaging and electrophysiological techniques. Here we propose a nonparametric significance method to test the nonzero values of multivariate autoregressive model to infer interactions in recurrent networks. We use random permutations or circular shifts of the original time series to generate the null-hypothesis distributions. The underlying network model is the same as used in multivariate Granger causality, but our test relies on the autoregressive coefficients instead of error residuals. By means of numerical simulation over multiple network configurations, we show that this method achieves a good control of false positives (type 1 error) and detects existing pairwise connections more accurately than using the standard parametric test for the ratio of error residuals. In practice, our method aims to detect temporal interactions in real neuronal networks with nodes possibly exhibiting redundant activity. As a proof of concept, we apply our method to multiunit activity (MUA) recorded from Utah electrode arrays in a monkey and examine detected interactions between 25 channels. We show that during stimulus presentation our method detects a large number of interactions that cannot be solely explained by the increase in the MUA level.</description><subject>Autoregressive models</subject><subject>Causality</subject><subject>Error detection</subject><subject>Granger causality</subject><subject>Humanities and Social Sciences</subject><subject>Influence</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>METHODS</subject><subject>Methods and statistics</subject><subject>Multiunit activity</subject><subject>Multivariate analysis</subject><subject>Multivariate autoregressive process</subject><subject>Network connectivity detection</subject><subject>Neural networks</subject><subject>Neuroimaging</subject><subject>Neurons and Cognition</subject><subject>Neurosciences</subject><subject>Nonparametric significance method</subject><subject>Nonparametric statistics</subject><subject>Permutations</subject><subject>Time series</subject><issn>2472-1751</issn><issn>2472-1751</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>XX2</sourceid><sourceid>DOA</sourceid><recordid>eNp1ks1v1DAQxSMEolXpjTOKxAUkFjyO448LVVUVWmlVLuVszTrO1ktiL46zqJz40_F-sGwrOESxx7_3Mhm_ongJ5D0Apx9uLm9vNGpCCKgnxTFlgk5A1PD0YH1UnA7DIiMUKBAmnxdHFSGKSAHHxa-b4JcYsbcpOlMmO6SyDbE0wXtrklu5dF82Nq3XwZfOl_3Y5TJGh8mWOKYQ7TzaYXArW3qbfoT4bSjRNyUul50zuNGlsNWN3qUS976Y8EXxrMVusKe790nx9dPl7cXVZPrl8_XF-XRiRE3TRFCElitA2tTtjFdMgGxIxZkBouoGhKxnKA1XViFYkLQG3iIayySVimN1UlxvfZuAC72Mrsd4rwM6vSmEONcYkzOd1W0N2CKZmRYUoy2TTUsVEa3g0EDFTPb6uPVajrPeNsb6FLF7YPrwxLs7PQ8rzQmvBKhs8HZrcPdIdnU-1esaYYwpBdUKMgtb1gyj0dEaG_NQN_R-s34oEVRXORRSZs2bXYMxfB_znereDcZ2HXobxiGzktM6D0lk9PUjdBHG6PNV6Dw4woSqJc_Uu10TMQxDtO2-ayB6nUR9mMSMvzoc0B7-k7u_Dfbu4IP_8Tr7B5qT5lfgWLYEzln-IwpZrInUP91yc7x3-A2anf0R</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Gilson, M.</creator><creator>Tauste Campo, A.</creator><creator>Chen, X.</creator><creator>Thiele, A.</creator><creator>Deco, G.</creator><general>MIT Press</general><general>MIT Press Journals, The</general><general>The MIT Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>LK8</scope><scope>M7P</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>XX2</scope><scope>1XC</scope><scope>BXJBU</scope><scope>IHQJB</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6726-7207</orcidid></search><sort><creationdate>20171201</creationdate><title>Nonparametric test for connectivity detection in multivariate autoregressive networks and application to multiunit activity data</title><author>Gilson, M. ; Tauste Campo, A. ; Chen, X. ; Thiele, A. ; Deco, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c752t-72a1f691a2d5fb634718d0364c1095d1785ba8c69e9a1e182516faace482896a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Autoregressive models</topic><topic>Causality</topic><topic>Error detection</topic><topic>Granger causality</topic><topic>Humanities and Social Sciences</topic><topic>Influence</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>METHODS</topic><topic>Methods and statistics</topic><topic>Multiunit activity</topic><topic>Multivariate analysis</topic><topic>Multivariate autoregressive process</topic><topic>Network connectivity detection</topic><topic>Neural networks</topic><topic>Neuroimaging</topic><topic>Neurons and Cognition</topic><topic>Neurosciences</topic><topic>Nonparametric significance method</topic><topic>Nonparametric statistics</topic><topic>Permutations</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gilson, M.</creatorcontrib><creatorcontrib>Tauste Campo, A.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Thiele, A.</creatorcontrib><creatorcontrib>Deco, G.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société</collection><collection>HAL-SHS: Archive ouverte en Sciences de l'Homme et de la Société (Open Access)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Network neuroscience (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilson, M.</au><au>Tauste Campo, A.</au><au>Chen, X.</au><au>Thiele, A.</au><au>Deco, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric test for connectivity detection in multivariate autoregressive networks and application to multiunit activity data</atitle><jtitle>Network neuroscience (Cambridge, Mass.)</jtitle><addtitle>Netw Neurosci</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>1</volume><issue>4</issue><spage>357</spage><epage>380</epage><pages>357-380</pages><issn>2472-1751</issn><eissn>2472-1751</eissn><abstract>Directed connectivity inference has become a cornerstone in neuroscience to analyze multivariate data from neuroimaging and electrophysiological techniques. Here we propose a nonparametric significance method to test the nonzero values of multivariate autoregressive model to infer interactions in recurrent networks. We use random permutations or circular shifts of the original time series to generate the null-hypothesis distributions. The underlying network model is the same as used in multivariate Granger causality, but our test relies on the autoregressive coefficients instead of error residuals. By means of numerical simulation over multiple network configurations, we show that this method achieves a good control of false positives (type 1 error) and detects existing pairwise connections more accurately than using the standard parametric test for the ratio of error residuals. In practice, our method aims to detect temporal interactions in real neuronal networks with nodes possibly exhibiting redundant activity. As a proof of concept, we apply our method to multiunit activity (MUA) recorded from Utah electrode arrays in a monkey and examine detected interactions between 25 channels. We show that during stimulus presentation our method detects a large number of interactions that cannot be solely explained by the increase in the MUA level.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>30090871</pmid><doi>10.1162/NETN_a_00019</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0002-6726-7207</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2472-1751
ispartof Network neuroscience (Cambridge, Mass.), 2017-12, Vol.1 (4), p.357-380
issn 2472-1751
2472-1751
language eng
recordid cdi_mit_journals_10_1162_NETN_a_00019
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; Recercat; EZB-FREE-00999 freely available EZB journals; ProQuest Central UK/Ireland; PubMed Central; ProQuest Central
subjects Autoregressive models
Causality
Error detection
Granger causality
Humanities and Social Sciences
Influence
Life Sciences
Mathematical models
Medical imaging
METHODS
Methods and statistics
Multiunit activity
Multivariate analysis
Multivariate autoregressive process
Network connectivity detection
Neural networks
Neuroimaging
Neurons and Cognition
Neurosciences
Nonparametric significance method
Nonparametric statistics
Permutations
Time series
title Nonparametric test for connectivity detection in multivariate autoregressive networks and application to multiunit activity data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_mit_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20test%20for%20connectivity%20detection%20in%20multivariate%20autoregressive%20networks%20and%20application%20to%20multiunit%20activity%20data&rft.jtitle=Network%20neuroscience%20(Cambridge,%20Mass.)&rft.au=Gilson,%20M.&rft.date=2017-12-01&rft.volume=1&rft.issue=4&rft.spage=357&rft.epage=380&rft.pages=357-380&rft.issn=2472-1751&rft.eissn=2472-1751&rft_id=info:doi/10.1162/NETN_a_00019&rft_dat=%3Cproquest_mit_j%3E2890479586%3C/proquest_mit_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2890479586&rft_id=info:pmid/30090871&rft_doaj_id=oai_doaj_org_article_f51afa0bcf1942f48df2907f761d134c&rfr_iscdi=true