High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso
The goal of supervised feature selection is to find a subset of input features that are responsible for predicting output values. The least absolute shrinkage and selection operator (Lasso) allows computationally efficient feature selection based on linear dependency between input features and outpu...
Gespeichert in:
Veröffentlicht in: | Neural computation 2014-01, Vol.26 (1), p.185-207 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 207 |
---|---|
container_issue | 1 |
container_start_page | 185 |
container_title | Neural computation |
container_volume | 26 |
creator | Yamada, Makoto Jitkrittum, Wittawat Sigal, Leonid Xing, Eric P. Sugiyama, Masashi |
description | The goal of supervised feature selection is to find a subset of input features that are responsible for predicting output values. The least absolute shrinkage and selection operator (Lasso) allows computationally efficient feature selection based on linear dependency between input features and output values. In this letter, we consider a feature-wise kernelized Lasso for capturing nonlinear input-output dependency. We first show that with particular choices of kernel functions, nonredundant features with strong statistical dependence on output values can be found in terms of kernel-based independence measures such as the Hilbert-Schmidt independence criterion. We then show that the globally optimal solution can be efficiently computed; this makes the approach scalable to high-dimensional problems. The effectiveness of the proposed method is demonstrated through feature selection experiments for classification and regression with thousands of features. |
doi_str_mv | 10.1162/NECO_a_00537 |
format | Article |
fullrecord | <record><control><sourceid>proquest_mit_j</sourceid><recordid>TN_cdi_mit_journals_10_1162_NECO_a_00537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1465864602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-1cd225679c54a71dc36adb5f7ecec2e42cf1a21e09a089a9cdd4444d9b134b563</originalsourceid><addsrcrecordid>eNptkL1PwzAQxS0EoqWwMaNILAwEbMcfyYhCSxEVHQDBZjnOBVwlTbGTofz1BNpChbjlpKef3r17CB0TfEGIoJf3w3SqtMKYR3IH9QmPcBjH8csu6uM4SUIphOyhA-9nGGNBMN9HPcoIpoSKPkrH9vUtvLYVzL2t57oMRqCb1kHwACWYptOCbLkRw2frIbgDN4fSfkAeTLT39SHaK3Tp4Wi9B-hpNHxMx-FkenObXk1CwwRpQmJySrmQieFMS5KbSOg844UEA4YCo6YgmhLAie6C68TkOesmTzISsYyLaIDOVr4LV7-34BtVWW-gLPUc6tYrwgSPBROYdujpH3RWt65775uSiYwTyTrqfEUZV3vvoFALZyvtlopg9VWu2i63w0_Wpm1WQf4Db9r8DVjZ7YP_eX0CbNeAtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1467978974</pqid></control><display><type>article</type><title>High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Yamada, Makoto ; Jitkrittum, Wittawat ; Sigal, Leonid ; Xing, Eric P. ; Sugiyama, Masashi</creator><creatorcontrib>Yamada, Makoto ; Jitkrittum, Wittawat ; Sigal, Leonid ; Xing, Eric P. ; Sugiyama, Masashi</creatorcontrib><description>The goal of supervised feature selection is to find a subset of input features that are responsible for predicting output values. The least absolute shrinkage and selection operator (Lasso) allows computationally efficient feature selection based on linear dependency between input features and output values. In this letter, we consider a feature-wise kernelized Lasso for capturing nonlinear input-output dependency. We first show that with particular choices of kernel functions, nonredundant features with strong statistical dependence on output values can be found in terms of kernel-based independence measures such as the Hilbert-Schmidt independence criterion. We then show that the globally optimal solution can be efficiently computed; this makes the approach scalable to high-dimensional problems. The effectiveness of the proposed method is demonstrated through feature selection experiments for classification and regression with thousands of features.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/NECO_a_00537</identifier><identifier>PMID: 24102126</identifier><identifier>CODEN: NEUCEB</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Algorithms ; Animals ; Artificial Intelligence ; Computer programming ; Experiments ; Letters ; Nonlinear Dynamics ; Oligonucleotide Array Sequence Analysis ; Pattern Recognition, Automated - methods ; Rats ; Regression analysis</subject><ispartof>Neural computation, 2014-01, Vol.26 (1), p.185-207</ispartof><rights>Copyright MIT Press Journals Jan 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-1cd225679c54a71dc36adb5f7ecec2e42cf1a21e09a089a9cdd4444d9b134b563</citedby><cites>FETCH-LOGICAL-c461t-1cd225679c54a71dc36adb5f7ecec2e42cf1a21e09a089a9cdd4444d9b134b563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/NECO_a_00537$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54008,54009</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24102126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yamada, Makoto</creatorcontrib><creatorcontrib>Jitkrittum, Wittawat</creatorcontrib><creatorcontrib>Sigal, Leonid</creatorcontrib><creatorcontrib>Xing, Eric P.</creatorcontrib><creatorcontrib>Sugiyama, Masashi</creatorcontrib><title>High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>The goal of supervised feature selection is to find a subset of input features that are responsible for predicting output values. The least absolute shrinkage and selection operator (Lasso) allows computationally efficient feature selection based on linear dependency between input features and output values. In this letter, we consider a feature-wise kernelized Lasso for capturing nonlinear input-output dependency. We first show that with particular choices of kernel functions, nonredundant features with strong statistical dependence on output values can be found in terms of kernel-based independence measures such as the Hilbert-Schmidt independence criterion. We then show that the globally optimal solution can be efficiently computed; this makes the approach scalable to high-dimensional problems. The effectiveness of the proposed method is demonstrated through feature selection experiments for classification and regression with thousands of features.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Computer programming</subject><subject>Experiments</subject><subject>Letters</subject><subject>Nonlinear Dynamics</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Rats</subject><subject>Regression analysis</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkL1PwzAQxS0EoqWwMaNILAwEbMcfyYhCSxEVHQDBZjnOBVwlTbGTofz1BNpChbjlpKef3r17CB0TfEGIoJf3w3SqtMKYR3IH9QmPcBjH8csu6uM4SUIphOyhA-9nGGNBMN9HPcoIpoSKPkrH9vUtvLYVzL2t57oMRqCb1kHwACWYptOCbLkRw2frIbgDN4fSfkAeTLT39SHaK3Tp4Wi9B-hpNHxMx-FkenObXk1CwwRpQmJySrmQieFMS5KbSOg844UEA4YCo6YgmhLAie6C68TkOesmTzISsYyLaIDOVr4LV7-34BtVWW-gLPUc6tYrwgSPBROYdujpH3RWt65775uSiYwTyTrqfEUZV3vvoFALZyvtlopg9VWu2i63w0_Wpm1WQf4Db9r8DVjZ7YP_eX0CbNeAtA</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Yamada, Makoto</creator><creator>Jitkrittum, Wittawat</creator><creator>Sigal, Leonid</creator><creator>Xing, Eric P.</creator><creator>Sugiyama, Masashi</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>20140101</creationdate><title>High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso</title><author>Yamada, Makoto ; Jitkrittum, Wittawat ; Sigal, Leonid ; Xing, Eric P. ; Sugiyama, Masashi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-1cd225679c54a71dc36adb5f7ecec2e42cf1a21e09a089a9cdd4444d9b134b563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Computer programming</topic><topic>Experiments</topic><topic>Letters</topic><topic>Nonlinear Dynamics</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Rats</topic><topic>Regression analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamada, Makoto</creatorcontrib><creatorcontrib>Jitkrittum, Wittawat</creatorcontrib><creatorcontrib>Sigal, Leonid</creatorcontrib><creatorcontrib>Xing, Eric P.</creatorcontrib><creatorcontrib>Sugiyama, Masashi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamada, Makoto</au><au>Jitkrittum, Wittawat</au><au>Sigal, Leonid</au><au>Xing, Eric P.</au><au>Sugiyama, Masashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>26</volume><issue>1</issue><spage>185</spage><epage>207</epage><pages>185-207</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><coden>NEUCEB</coden><abstract>The goal of supervised feature selection is to find a subset of input features that are responsible for predicting output values. The least absolute shrinkage and selection operator (Lasso) allows computationally efficient feature selection based on linear dependency between input features and output values. In this letter, we consider a feature-wise kernelized Lasso for capturing nonlinear input-output dependency. We first show that with particular choices of kernel functions, nonredundant features with strong statistical dependence on output values can be found in terms of kernel-based independence measures such as the Hilbert-Schmidt independence criterion. We then show that the globally optimal solution can be efficiently computed; this makes the approach scalable to high-dimensional problems. The effectiveness of the proposed method is demonstrated through feature selection experiments for classification and regression with thousands of features.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>24102126</pmid><doi>10.1162/NECO_a_00537</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-7667 |
ispartof | Neural computation, 2014-01, Vol.26 (1), p.185-207 |
issn | 0899-7667 1530-888X |
language | eng |
recordid | cdi_mit_journals_10_1162_NECO_a_00537 |
source | MEDLINE; MIT Press Journals |
subjects | Algorithms Animals Artificial Intelligence Computer programming Experiments Letters Nonlinear Dynamics Oligonucleotide Array Sequence Analysis Pattern Recognition, Automated - methods Rats Regression analysis |
title | High-Dimensional Feature Selection by Feature-Wise Kernelized Lasso |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_mit_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Dimensional%20Feature%20Selection%20by%20Feature-Wise%20Kernelized%20Lasso&rft.jtitle=Neural%20computation&rft.au=Yamada,%20Makoto&rft.date=2014-01-01&rft.volume=26&rft.issue=1&rft.spage=185&rft.epage=207&rft.pages=185-207&rft.issn=0899-7667&rft.eissn=1530-888X&rft.coden=NEUCEB&rft_id=info:doi/10.1162/NECO_a_00537&rft_dat=%3Cproquest_mit_j%3E1465864602%3C/proquest_mit_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1467978974&rft_id=info:pmid/24102126&rfr_iscdi=true |