Toward a Biophysically Plausible Bidirectional Hebbian Rule

Although the commonly used quadratic Hebbian-;anti-Hebbian rules lead to successful models of plasticity and learning, they are inconsistent with neurophysiology. Other rules, more physiologically plausible, fail to specify the biological mechanism of bidirectionality and the biological mechanism th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computation 1998-04, Vol.10 (3), p.499-520
Hauptverfasser: Grzywacz, Norberto M., Burgi, Pierre-Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 520
container_issue 3
container_start_page 499
container_title Neural computation
container_volume 10
creator Grzywacz, Norberto M.
Burgi, Pierre-Yves
description Although the commonly used quadratic Hebbian-;anti-Hebbian rules lead to successful models of plasticity and learning, they are inconsistent with neurophysiology. Other rules, more physiologically plausible, fail to specify the biological mechanism of bidirectionality and the biological mechanism that prevents synapses from changing from excitatory to inhibitory, and vice versa. We developed a synaptic bidirectional Hebbian rule that does not suffer from these problems. This rule was compared with physiological homosynaptic conditions in the hippocampus, with the results indicating the consistency of this rule with long-term potentiation (LTP) and long-term depression (LTD) phenomenologies. The phenomenologies considered included the reversible dynamics of LTP and LTD and the effects of -methyl- -aspartate blockers and phosphatase inhibitors.
doi_str_mv 10.1162/089976698300017629
format Article
fullrecord <record><control><sourceid>proquest_mit_j</sourceid><recordid>TN_cdi_mit_journals_10_1162_089976698300017629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16402209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c599t-4e6c4f8aeb8cdc556b4c3b48b12d87c24ba020224a781ee8430ff2d7640936fc3</originalsourceid><addsrcrecordid>eNqFkE1LAzEURYMoWqt_QBBmIe6m5mvygSstVgVBEQV3IclkMCWdqUlHqb_eSIsbi64Ceeeex7sAHCE4QojhMyik5IxJQSCEiDMst8AAVQSWQoiXbTD4BspM8D2wn9I0UwzBahfsygrznBqA86fuQ8e60MWl7-avy-StDmFZPATdJ2-Cy_-1j84ufNfqUNw4Y7xui8c-uAOw0-iQ3OH6HYLnydXT-Ka8u7--HV_clbaSclFSxyxthHZG2NpWFTPUEkOFQbgW3GJqNMQQY6q5QM4JSmDT4JozCiVhjSVDcLryzmP31ru0UDOfrAtBt67rk-KSc8Eh_hdEWYlxtg4BXoE2dilF16h59DMdlwpB9V2t-l1tDh2v7b2Zufonsu4yz0_Wc51yiU3UrfXpB8uLMacoY6MVNvMLNe36mGtNf--dbAi0znbvCHqiSL6ccJX1KDuyQX36-SbRF4Q7oRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16402209</pqid></control><display><type>article</type><title>Toward a Biophysically Plausible Bidirectional Hebbian Rule</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Grzywacz, Norberto M. ; Burgi, Pierre-Yves</creator><creatorcontrib>Grzywacz, Norberto M. ; Burgi, Pierre-Yves</creatorcontrib><description>Although the commonly used quadratic Hebbian-;anti-Hebbian rules lead to successful models of plasticity and learning, they are inconsistent with neurophysiology. Other rules, more physiologically plausible, fail to specify the biological mechanism of bidirectionality and the biological mechanism that prevents synapses from changing from excitatory to inhibitory, and vice versa. We developed a synaptic bidirectional Hebbian rule that does not suffer from these problems. This rule was compared with physiological homosynaptic conditions in the hippocampus, with the results indicating the consistency of this rule with long-term potentiation (LTP) and long-term depression (LTD) phenomenologies. The phenomenologies considered included the reversible dynamics of LTP and LTD and the effects of -methyl- -aspartate blockers and phosphatase inhibitors.</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>DOI: 10.1162/089976698300017629</identifier><identifier>PMID: 9527830</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Applied sciences ; Artificial intelligence ; Biophysical Phenomena ; Biophysics ; Computer science; control theory; systems ; Computer Simulation ; Connectionism. Neural networks ; Enzyme Inhibitors - pharmacology ; Exact sciences and technology ; Excitatory Amino Acid Antagonists - pharmacology ; Feedback ; Hippocampus - physiology ; Learning - physiology ; Long-Term Potentiation ; Mathematics ; Models, Neurological ; Neuronal Plasticity - physiology ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical simulation ; Sciences and techniques of general use ; Synaptic Transmission - physiology</subject><ispartof>Neural computation, 1998-04, Vol.10 (3), p.499-520</ispartof><rights>1998 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c599t-4e6c4f8aeb8cdc556b4c3b48b12d87c24ba020224a781ee8430ff2d7640936fc3</citedby><cites>FETCH-LOGICAL-c599t-4e6c4f8aeb8cdc556b4c3b48b12d87c24ba020224a781ee8430ff2d7640936fc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/neco/article/doi/10.1162/089976698300017629$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54009,54010</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2202741$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9527830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grzywacz, Norberto M.</creatorcontrib><creatorcontrib>Burgi, Pierre-Yves</creatorcontrib><title>Toward a Biophysically Plausible Bidirectional Hebbian Rule</title><title>Neural computation</title><addtitle>Neural Comput</addtitle><description>Although the commonly used quadratic Hebbian-;anti-Hebbian rules lead to successful models of plasticity and learning, they are inconsistent with neurophysiology. Other rules, more physiologically plausible, fail to specify the biological mechanism of bidirectionality and the biological mechanism that prevents synapses from changing from excitatory to inhibitory, and vice versa. We developed a synaptic bidirectional Hebbian rule that does not suffer from these problems. This rule was compared with physiological homosynaptic conditions in the hippocampus, with the results indicating the consistency of this rule with long-term potentiation (LTP) and long-term depression (LTD) phenomenologies. The phenomenologies considered included the reversible dynamics of LTP and LTD and the effects of -methyl- -aspartate blockers and phosphatase inhibitors.</description><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Computer science; control theory; systems</subject><subject>Computer Simulation</subject><subject>Connectionism. Neural networks</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Exact sciences and technology</subject><subject>Excitatory Amino Acid Antagonists - pharmacology</subject><subject>Feedback</subject><subject>Hippocampus - physiology</subject><subject>Learning - physiology</subject><subject>Long-Term Potentiation</subject><subject>Mathematics</subject><subject>Models, Neurological</subject><subject>Neuronal Plasticity - physiology</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical simulation</subject><subject>Sciences and techniques of general use</subject><subject>Synaptic Transmission - physiology</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1LAzEURYMoWqt_QBBmIe6m5mvygSstVgVBEQV3IclkMCWdqUlHqb_eSIsbi64Ceeeex7sAHCE4QojhMyik5IxJQSCEiDMst8AAVQSWQoiXbTD4BspM8D2wn9I0UwzBahfsygrznBqA86fuQ8e60MWl7-avy-StDmFZPATdJ2-Cy_-1j84ufNfqUNw4Y7xui8c-uAOw0-iQ3OH6HYLnydXT-Ka8u7--HV_clbaSclFSxyxthHZG2NpWFTPUEkOFQbgW3GJqNMQQY6q5QM4JSmDT4JozCiVhjSVDcLryzmP31ru0UDOfrAtBt67rk-KSc8Eh_hdEWYlxtg4BXoE2dilF16h59DMdlwpB9V2t-l1tDh2v7b2Zufonsu4yz0_Wc51yiU3UrfXpB8uLMacoY6MVNvMLNe36mGtNf--dbAi0znbvCHqiSL6ccJX1KDuyQX36-SbRF4Q7oRw</recordid><startdate>19980401</startdate><enddate>19980401</enddate><creator>Grzywacz, Norberto M.</creator><creator>Burgi, Pierre-Yves</creator><general>MIT Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>19980401</creationdate><title>Toward a Biophysically Plausible Bidirectional Hebbian Rule</title><author>Grzywacz, Norberto M. ; Burgi, Pierre-Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c599t-4e6c4f8aeb8cdc556b4c3b48b12d87c24ba020224a781ee8430ff2d7640936fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Computer science; control theory; systems</topic><topic>Computer Simulation</topic><topic>Connectionism. Neural networks</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Exact sciences and technology</topic><topic>Excitatory Amino Acid Antagonists - pharmacology</topic><topic>Feedback</topic><topic>Hippocampus - physiology</topic><topic>Learning - physiology</topic><topic>Long-Term Potentiation</topic><topic>Mathematics</topic><topic>Models, Neurological</topic><topic>Neuronal Plasticity - physiology</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical simulation</topic><topic>Sciences and techniques of general use</topic><topic>Synaptic Transmission - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grzywacz, Norberto M.</creatorcontrib><creatorcontrib>Burgi, Pierre-Yves</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grzywacz, Norberto M.</au><au>Burgi, Pierre-Yves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward a Biophysically Plausible Bidirectional Hebbian Rule</atitle><jtitle>Neural computation</jtitle><addtitle>Neural Comput</addtitle><date>1998-04-01</date><risdate>1998</risdate><volume>10</volume><issue>3</issue><spage>499</spage><epage>520</epage><pages>499-520</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><abstract>Although the commonly used quadratic Hebbian-;anti-Hebbian rules lead to successful models of plasticity and learning, they are inconsistent with neurophysiology. Other rules, more physiologically plausible, fail to specify the biological mechanism of bidirectionality and the biological mechanism that prevents synapses from changing from excitatory to inhibitory, and vice versa. We developed a synaptic bidirectional Hebbian rule that does not suffer from these problems. This rule was compared with physiological homosynaptic conditions in the hippocampus, with the results indicating the consistency of this rule with long-term potentiation (LTP) and long-term depression (LTD) phenomenologies. The phenomenologies considered included the reversible dynamics of LTP and LTD and the effects of -methyl- -aspartate blockers and phosphatase inhibitors.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>9527830</pmid><doi>10.1162/089976698300017629</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 1998-04, Vol.10 (3), p.499-520
issn 0899-7667
1530-888X
language eng
recordid cdi_mit_journals_10_1162_089976698300017629
source MEDLINE; MIT Press Journals
subjects Applied sciences
Artificial intelligence
Biophysical Phenomena
Biophysics
Computer science
control theory
systems
Computer Simulation
Connectionism. Neural networks
Enzyme Inhibitors - pharmacology
Exact sciences and technology
Excitatory Amino Acid Antagonists - pharmacology
Feedback
Hippocampus - physiology
Learning - physiology
Long-Term Potentiation
Mathematics
Models, Neurological
Neuronal Plasticity - physiology
Numerical analysis
Numerical analysis. Scientific computation
Numerical simulation
Sciences and techniques of general use
Synaptic Transmission - physiology
title Toward a Biophysically Plausible Bidirectional Hebbian Rule
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A28%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_mit_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20a%20Biophysically%20Plausible%20Bidirectional%20Hebbian%20Rule&rft.jtitle=Neural%20computation&rft.au=Grzywacz,%20Norberto%20M.&rft.date=1998-04-01&rft.volume=10&rft.issue=3&rft.spage=499&rft.epage=520&rft.pages=499-520&rft.issn=0899-7667&rft.eissn=1530-888X&rft_id=info:doi/10.1162/089976698300017629&rft_dat=%3Cproquest_mit_j%3E16402209%3C/proquest_mit_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=16402209&rft_id=info:pmid/9527830&rfr_iscdi=true