Does biological rhythm transmit from plants to rhizosphere microbes?
Plant physiological and metabolic processes are modulated by rhythmic gene expression in a large part. Meanwhile, plants are also regulated by rhizosphere microorganisms, which are fed by root exudates and provide beneficial functions to their plant host. Whether the biorhythms in plants would trans...
Gespeichert in:
Veröffentlicht in: | Environmental Microbiology 2021-10, Vol.23 (11), p.6895-6906 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plant physiological and metabolic processes are modulated by rhythmic gene expression in a large part. Meanwhile, plants are also regulated by rhizosphere microorganisms, which are fed by root exudates and provide beneficial functions to their plant host. Whether the biorhythms in plants would transfer to the rhizosphere microbial community is still uncertain and their intricate connection remains poorly understood. Here, we investigated the role of the Arabidopsis circadian clock in shaping the rhizosphere microbial community using wild-type plants and clock mutants (cca1-1 and toc1-101) with transcriptomic, metabolomic and 16S rRNA gene sequencing analysis throughout a 24-h period. Deficiencies of the central circadian clock led to abnormal diurnal rhythms for thousands of expressed genes and dozens of root exudates. The bacterial community failed to follow obvious patterns in the 24-h period, and there was lack of coordination with plant growth in the clock mutants. Our results suggest that the robust rhythmicity of genes and root exudation due to circadian clock in plants is an important driving force for the positive succession of rhizosphere communities, which will feedback on plant development. |
---|---|
DOI: | 10.1111/1462-2920.15820 |