Guided waves in a fluid layer on an elastic irregular bottom

In this paper one considers the linearized problem to determine the movement of an ideal heavy fluid contained in an unbounded container with elastic walls. As initial data one knows the movement of both the bottom and the free surface of the fluid and also the strength of certain perturbation, stro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Publicacions matemàtiques 1996, Vol.40 (2), p.243-276
1. Verfasser: Fraguela Collar, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 276
container_issue 2
container_start_page 243
container_title Publicacions matemàtiques
container_volume 40
creator Fraguela Collar, A.
description In this paper one considers the linearized problem to determine the movement of an ideal heavy fluid contained in an unbounded container with elastic walls. As initial data one knows the movement of both the bottom and the free surface of the fluid and also the strength of certain perturbation, strong enough to take the bottom out of its rest state. One important point to be considered regards the influence of the bottom's geometry on the propagation of superficial waves. This problem has been already studied in other works without considering the elastic properties of the bottom and considering a cilindrical container with bounded section.
doi_str_mv 10.5565/PUBLMAT_40296_02
format Article
fullrecord <record><control><sourceid>jstor_latin</sourceid><recordid>TN_cdi_latinindex_primary_oai_record_407507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43736550</jstor_id><sourcerecordid>43736550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-cfb4f8429cf1a730773c561e143a9521413bb8e2f3b5896b268fda5c003f3a083</originalsourceid><addsrcrecordid>eNpdUE1LAzEUDKJgrd69CLnL6svn7oKXWrQKFT2055DNJpKybSTZqv33pqxU8PSGYea9eYPQJYEbIaS4fVvez18mC8WB1lIBPUIjCoQXnAk4RiOgGRNes1N0ltIKgFYV8BG6m219a1v8pT9twn6DNXZdpnCndzbikIkNtp1OvTfYx2jft52OuAl9H9bn6MTpLtmL3zlGy8eHxfSpmL_OnqeTeWGopH1hXMNdxWltHNElg7JkRkhiCWe6FjkYYU1TWepYI6paNlRWrtXCADDHNFRsjK6HvZ3u_cZvWvutPqJf67hTQXsVrQmxza-XAsqshkFtYkgpWnfQElD7rtT_rrLlarCsUh_iQc9ZyaQQ8BfApK1RUZsw3N0Do3ulY66ns4qVleTsB2zsdf4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Guided waves in a fluid layer on an elastic irregular bottom</title><source>Revistes Catalanes amb Accés Obert (RACO)</source><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Fraguela Collar, A.</creator><creatorcontrib>Fraguela Collar, A.</creatorcontrib><description>In this paper one considers the linearized problem to determine the movement of an ideal heavy fluid contained in an unbounded container with elastic walls. As initial data one knows the movement of both the bottom and the free surface of the fluid and also the strength of certain perturbation, strong enough to take the bottom out of its rest state. One important point to be considered regards the influence of the bottom's geometry on the propagation of superficial waves. This problem has been already studied in other works without considering the elastic properties of the bottom and considering a cilindrical container with bounded section.</description><identifier>ISSN: 0214-1493</identifier><identifier>EISSN: 2014-4350</identifier><identifier>DOI: 10.5565/PUBLMAT_40296_02</identifier><language>eng</language><publisher>Universitat Autònoma de Barcelona</publisher><subject>Amplitude ; Cauchy problem ; Dinámica de fluidos ; Dot product of vectors ; Eigenvalues ; Elastic waves ; Elastodinámica ; Geometric planes ; Hilbert spaces ; Mathematical functions ; Modelo geométrico ; Modelo lineal ; Modelos matemáticos ; Normal vectors ; Ondas superficiales ; Teoría de perturbación ; Vector valued functions</subject><ispartof>Publicacions matemàtiques, 1996, Vol.40 (2), p.243-276</ispartof><rights>free</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43736550$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43736550$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,4009,27028,27902,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Fraguela Collar, A.</creatorcontrib><title>Guided waves in a fluid layer on an elastic irregular bottom</title><title>Publicacions matemàtiques</title><description>In this paper one considers the linearized problem to determine the movement of an ideal heavy fluid contained in an unbounded container with elastic walls. As initial data one knows the movement of both the bottom and the free surface of the fluid and also the strength of certain perturbation, strong enough to take the bottom out of its rest state. One important point to be considered regards the influence of the bottom's geometry on the propagation of superficial waves. This problem has been already studied in other works without considering the elastic properties of the bottom and considering a cilindrical container with bounded section.</description><subject>Amplitude</subject><subject>Cauchy problem</subject><subject>Dinámica de fluidos</subject><subject>Dot product of vectors</subject><subject>Eigenvalues</subject><subject>Elastic waves</subject><subject>Elastodinámica</subject><subject>Geometric planes</subject><subject>Hilbert spaces</subject><subject>Mathematical functions</subject><subject>Modelo geométrico</subject><subject>Modelo lineal</subject><subject>Modelos matemáticos</subject><subject>Normal vectors</subject><subject>Ondas superficiales</subject><subject>Teoría de perturbación</subject><subject>Vector valued functions</subject><issn>0214-1493</issn><issn>2014-4350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>2VB</sourceid><recordid>eNpdUE1LAzEUDKJgrd69CLnL6svn7oKXWrQKFT2055DNJpKybSTZqv33pqxU8PSGYea9eYPQJYEbIaS4fVvez18mC8WB1lIBPUIjCoQXnAk4RiOgGRNes1N0ltIKgFYV8BG6m219a1v8pT9twn6DNXZdpnCndzbikIkNtp1OvTfYx2jft52OuAl9H9bn6MTpLtmL3zlGy8eHxfSpmL_OnqeTeWGopH1hXMNdxWltHNElg7JkRkhiCWe6FjkYYU1TWepYI6paNlRWrtXCADDHNFRsjK6HvZ3u_cZvWvutPqJf67hTQXsVrQmxza-XAsqshkFtYkgpWnfQElD7rtT_rrLlarCsUh_iQc9ZyaQQ8BfApK1RUZsw3N0Do3ulY66ns4qVleTsB2zsdf4</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Fraguela Collar, A.</creator><general>Universitat Autònoma de Barcelona</general><general>Universitat Autònoma de Barcelona: Servei de Publicacions</general><scope>2VB</scope><scope>AALZO</scope><scope>AFIUA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>77F</scope></search><sort><creationdate>1996</creationdate><title>Guided waves in a fluid layer on an elastic irregular bottom</title><author>Fraguela Collar, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-cfb4f8429cf1a730773c561e143a9521413bb8e2f3b5896b268fda5c003f3a083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Amplitude</topic><topic>Cauchy problem</topic><topic>Dinámica de fluidos</topic><topic>Dot product of vectors</topic><topic>Eigenvalues</topic><topic>Elastic waves</topic><topic>Elastodinámica</topic><topic>Geometric planes</topic><topic>Hilbert spaces</topic><topic>Mathematical functions</topic><topic>Modelo geométrico</topic><topic>Modelo lineal</topic><topic>Modelos matemáticos</topic><topic>Normal vectors</topic><topic>Ondas superficiales</topic><topic>Teoría de perturbación</topic><topic>Vector valued functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fraguela Collar, A.</creatorcontrib><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>Revistes Catalanes amb Accés Obert (RACO) (Full Text)</collection><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>CrossRef</collection><collection>Latindex</collection><jtitle>Publicacions matemàtiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fraguela Collar, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guided waves in a fluid layer on an elastic irregular bottom</atitle><jtitle>Publicacions matemàtiques</jtitle><date>1996</date><risdate>1996</risdate><volume>40</volume><issue>2</issue><spage>243</spage><epage>276</epage><pages>243-276</pages><issn>0214-1493</issn><eissn>2014-4350</eissn><abstract>In this paper one considers the linearized problem to determine the movement of an ideal heavy fluid contained in an unbounded container with elastic walls. As initial data one knows the movement of both the bottom and the free surface of the fluid and also the strength of certain perturbation, strong enough to take the bottom out of its rest state. One important point to be considered regards the influence of the bottom's geometry on the propagation of superficial waves. This problem has been already studied in other works without considering the elastic properties of the bottom and considering a cilindrical container with bounded section.</abstract><pub>Universitat Autònoma de Barcelona</pub><doi>10.5565/PUBLMAT_40296_02</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0214-1493
ispartof Publicacions matemàtiques, 1996, Vol.40 (2), p.243-276
issn 0214-1493
2014-4350
language eng
recordid cdi_latinindex_primary_oai_record_407507
source Revistes Catalanes amb Accés Obert (RACO); JSTOR Mathematics & Statistics; Jstor Complete Legacy; Alma/SFX Local Collection
subjects Amplitude
Cauchy problem
Dinámica de fluidos
Dot product of vectors
Eigenvalues
Elastic waves
Elastodinámica
Geometric planes
Hilbert spaces
Mathematical functions
Modelo geométrico
Modelo lineal
Modelos matemáticos
Normal vectors
Ondas superficiales
Teoría de perturbación
Vector valued functions
title Guided waves in a fluid layer on an elastic irregular bottom
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_latin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guided%20waves%20in%20a%20fluid%20layer%20on%20an%20elastic%20irregular%20bottom&rft.jtitle=Publicacions%20matem%C3%A0tiques&rft.au=Fraguela%20Collar,%20A.&rft.date=1996&rft.volume=40&rft.issue=2&rft.spage=243&rft.epage=276&rft.pages=243-276&rft.issn=0214-1493&rft.eissn=2014-4350&rft_id=info:doi/10.5565/PUBLMAT_40296_02&rft_dat=%3Cjstor_latin%3E43736550%3C/jstor_latin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43736550&rfr_iscdi=true