Guided waves in a fluid layer on an elastic irregular bottom
In this paper one considers the linearized problem to determine the movement of an ideal heavy fluid contained in an unbounded container with elastic walls. As initial data one knows the movement of both the bottom and the free surface of the fluid and also the strength of certain perturbation, stro...
Gespeichert in:
Veröffentlicht in: | Publicacions matemàtiques 1996, Vol.40 (2), p.243-276 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 276 |
---|---|
container_issue | 2 |
container_start_page | 243 |
container_title | Publicacions matemàtiques |
container_volume | 40 |
creator | Fraguela Collar, A. |
description | In this paper one considers the linearized problem to determine the movement of an ideal heavy fluid contained in an unbounded container with elastic walls. As initial data one knows the movement of both the bottom and the free surface of the fluid and also the strength of certain perturbation, strong enough to take the bottom out of its rest state.
One important point to be considered regards the influence of the bottom's geometry on the propagation of superficial waves. This problem has been already studied in other works without considering the elastic properties of the bottom and considering a cilindrical container with bounded section. |
doi_str_mv | 10.5565/PUBLMAT_40296_02 |
format | Article |
fullrecord | <record><control><sourceid>jstor_latin</sourceid><recordid>TN_cdi_latinindex_primary_oai_record_407507</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43736550</jstor_id><sourcerecordid>43736550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-cfb4f8429cf1a730773c561e143a9521413bb8e2f3b5896b268fda5c003f3a083</originalsourceid><addsrcrecordid>eNpdUE1LAzEUDKJgrd69CLnL6svn7oKXWrQKFT2055DNJpKybSTZqv33pqxU8PSGYea9eYPQJYEbIaS4fVvez18mC8WB1lIBPUIjCoQXnAk4RiOgGRNes1N0ltIKgFYV8BG6m219a1v8pT9twn6DNXZdpnCndzbikIkNtp1OvTfYx2jft52OuAl9H9bn6MTpLtmL3zlGy8eHxfSpmL_OnqeTeWGopH1hXMNdxWltHNElg7JkRkhiCWe6FjkYYU1TWepYI6paNlRWrtXCADDHNFRsjK6HvZ3u_cZvWvutPqJf67hTQXsVrQmxza-XAsqshkFtYkgpWnfQElD7rtT_rrLlarCsUh_iQc9ZyaQQ8BfApK1RUZsw3N0Do3ulY66ns4qVleTsB2zsdf4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Guided waves in a fluid layer on an elastic irregular bottom</title><source>Revistes Catalanes amb Accés Obert (RACO)</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Fraguela Collar, A.</creator><creatorcontrib>Fraguela Collar, A.</creatorcontrib><description>In this paper one considers the linearized problem to determine the movement of an ideal heavy fluid contained in an unbounded container with elastic walls. As initial data one knows the movement of both the bottom and the free surface of the fluid and also the strength of certain perturbation, strong enough to take the bottom out of its rest state.
One important point to be considered regards the influence of the bottom's geometry on the propagation of superficial waves. This problem has been already studied in other works without considering the elastic properties of the bottom and considering a cilindrical container with bounded section.</description><identifier>ISSN: 0214-1493</identifier><identifier>EISSN: 2014-4350</identifier><identifier>DOI: 10.5565/PUBLMAT_40296_02</identifier><language>eng</language><publisher>Universitat Autònoma de Barcelona</publisher><subject>Amplitude ; Cauchy problem ; Dinámica de fluidos ; Dot product of vectors ; Eigenvalues ; Elastic waves ; Elastodinámica ; Geometric planes ; Hilbert spaces ; Mathematical functions ; Modelo geométrico ; Modelo lineal ; Modelos matemáticos ; Normal vectors ; Ondas superficiales ; Teoría de perturbación ; Vector valued functions</subject><ispartof>Publicacions matemàtiques, 1996, Vol.40 (2), p.243-276</ispartof><rights>free</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43736550$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43736550$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,828,881,4009,27028,27902,27903,27904,57995,57999,58228,58232</link.rule.ids></links><search><creatorcontrib>Fraguela Collar, A.</creatorcontrib><title>Guided waves in a fluid layer on an elastic irregular bottom</title><title>Publicacions matemàtiques</title><description>In this paper one considers the linearized problem to determine the movement of an ideal heavy fluid contained in an unbounded container with elastic walls. As initial data one knows the movement of both the bottom and the free surface of the fluid and also the strength of certain perturbation, strong enough to take the bottom out of its rest state.
One important point to be considered regards the influence of the bottom's geometry on the propagation of superficial waves. This problem has been already studied in other works without considering the elastic properties of the bottom and considering a cilindrical container with bounded section.</description><subject>Amplitude</subject><subject>Cauchy problem</subject><subject>Dinámica de fluidos</subject><subject>Dot product of vectors</subject><subject>Eigenvalues</subject><subject>Elastic waves</subject><subject>Elastodinámica</subject><subject>Geometric planes</subject><subject>Hilbert spaces</subject><subject>Mathematical functions</subject><subject>Modelo geométrico</subject><subject>Modelo lineal</subject><subject>Modelos matemáticos</subject><subject>Normal vectors</subject><subject>Ondas superficiales</subject><subject>Teoría de perturbación</subject><subject>Vector valued functions</subject><issn>0214-1493</issn><issn>2014-4350</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>2VB</sourceid><recordid>eNpdUE1LAzEUDKJgrd69CLnL6svn7oKXWrQKFT2055DNJpKybSTZqv33pqxU8PSGYea9eYPQJYEbIaS4fVvez18mC8WB1lIBPUIjCoQXnAk4RiOgGRNes1N0ltIKgFYV8BG6m219a1v8pT9twn6DNXZdpnCndzbikIkNtp1OvTfYx2jft52OuAl9H9bn6MTpLtmL3zlGy8eHxfSpmL_OnqeTeWGopH1hXMNdxWltHNElg7JkRkhiCWe6FjkYYU1TWepYI6paNlRWrtXCADDHNFRsjK6HvZ3u_cZvWvutPqJf67hTQXsVrQmxza-XAsqshkFtYkgpWnfQElD7rtT_rrLlarCsUh_iQc9ZyaQQ8BfApK1RUZsw3N0Do3ulY66ns4qVleTsB2zsdf4</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Fraguela Collar, A.</creator><general>Universitat Autònoma de Barcelona</general><general>Universitat Autònoma de Barcelona: Servei de Publicacions</general><scope>2VB</scope><scope>AALZO</scope><scope>AFIUA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>77F</scope></search><sort><creationdate>1996</creationdate><title>Guided waves in a fluid layer on an elastic irregular bottom</title><author>Fraguela Collar, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-cfb4f8429cf1a730773c561e143a9521413bb8e2f3b5896b268fda5c003f3a083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Amplitude</topic><topic>Cauchy problem</topic><topic>Dinámica de fluidos</topic><topic>Dot product of vectors</topic><topic>Eigenvalues</topic><topic>Elastic waves</topic><topic>Elastodinámica</topic><topic>Geometric planes</topic><topic>Hilbert spaces</topic><topic>Mathematical functions</topic><topic>Modelo geométrico</topic><topic>Modelo lineal</topic><topic>Modelos matemáticos</topic><topic>Normal vectors</topic><topic>Ondas superficiales</topic><topic>Teoría de perturbación</topic><topic>Vector valued functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fraguela Collar, A.</creatorcontrib><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>Revistes Catalanes amb Accés Obert (RACO) (Full Text)</collection><collection>Revistes Catalanes amb Accés Obert (RACO)</collection><collection>CrossRef</collection><collection>Latindex</collection><jtitle>Publicacions matemàtiques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fraguela Collar, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guided waves in a fluid layer on an elastic irregular bottom</atitle><jtitle>Publicacions matemàtiques</jtitle><date>1996</date><risdate>1996</risdate><volume>40</volume><issue>2</issue><spage>243</spage><epage>276</epage><pages>243-276</pages><issn>0214-1493</issn><eissn>2014-4350</eissn><abstract>In this paper one considers the linearized problem to determine the movement of an ideal heavy fluid contained in an unbounded container with elastic walls. As initial data one knows the movement of both the bottom and the free surface of the fluid and also the strength of certain perturbation, strong enough to take the bottom out of its rest state.
One important point to be considered regards the influence of the bottom's geometry on the propagation of superficial waves. This problem has been already studied in other works without considering the elastic properties of the bottom and considering a cilindrical container with bounded section.</abstract><pub>Universitat Autònoma de Barcelona</pub><doi>10.5565/PUBLMAT_40296_02</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0214-1493 |
ispartof | Publicacions matemàtiques, 1996, Vol.40 (2), p.243-276 |
issn | 0214-1493 2014-4350 |
language | eng |
recordid | cdi_latinindex_primary_oai_record_407507 |
source | Revistes Catalanes amb Accés Obert (RACO); JSTOR Mathematics & Statistics; Jstor Complete Legacy; Alma/SFX Local Collection |
subjects | Amplitude Cauchy problem Dinámica de fluidos Dot product of vectors Eigenvalues Elastic waves Elastodinámica Geometric planes Hilbert spaces Mathematical functions Modelo geométrico Modelo lineal Modelos matemáticos Normal vectors Ondas superficiales Teoría de perturbación Vector valued functions |
title | Guided waves in a fluid layer on an elastic irregular bottom |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T01%3A58%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_latin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guided%20waves%20in%20a%20fluid%20layer%20on%20an%20elastic%20irregular%20bottom&rft.jtitle=Publicacions%20matem%C3%A0tiques&rft.au=Fraguela%20Collar,%20A.&rft.date=1996&rft.volume=40&rft.issue=2&rft.spage=243&rft.epage=276&rft.pages=243-276&rft.issn=0214-1493&rft.eissn=2014-4350&rft_id=info:doi/10.5565/PUBLMAT_40296_02&rft_dat=%3Cjstor_latin%3E43736550%3C/jstor_latin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=43736550&rfr_iscdi=true |