A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor
Engineered domains of human fibronectin (Adnectins™) were used to generate a bispecific Adnectin targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR), two transmembrane receptors that mediate proliferative and survival cell signaling in cancer. Single-...
Gespeichert in:
Veröffentlicht in: | mAbs 2011-01, Vol.3 (1), p.38-48 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | 1 |
container_start_page | 38 |
container_title | mAbs |
container_volume | 3 |
creator | Emanuel, Stuart L. Engle, Linda J. Chao, Ginger Zhu, Rong-Rong Cao, Carolyn Lin, Zheng Yamniuk, Aaron P. Hosbach, Jennifer Brown, Jennifer Fitzpatrick, Elizabeth Gokemeijer, Jochem Morin, Paul Morse, Brent A. Carvajal, Irvith M. Fabrizio, David Wright, Martin C. Das Gupta, Ruchira Gosselin, Michael Cataldo, Daniel Ryseck, Rolf P. Doyle, Michael L. Wong, Tai W. Camphausen, Raymond T. Cload, Sharon T. Marsh, H. Nicholas Gottardis, Marco M. Furfine, Eric S. |
description | Engineered domains of human fibronectin (Adnectins™) were used to generate a bispecific Adnectin targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR), two transmembrane receptors that mediate proliferative and survival cell signaling in cancer. Single-domain Adnectins that specifically bind EGFR or IGF-IR were generated using mRNA display with a library containing as many as 10
13
Adnectin variants. mRNA display was also used to optimize lead Adnectin affinities, resulting in clones that inhibited EGFR phosphorylation at 7 to 38 nM compared to 2.6 μM for the parental clone. Individual, optimized, Adnectins specific for blocking either EGFR or IGF-IR signaling were engineered into a single protein (EI-Tandem Adnectin). The EI-Tandems inhibited phosphorylation of EGFR and IGF-IR, induced receptor degradation, and inhibited down-stream cell signaling and proliferation of human cancer cell lines (A431, H292, BxPC3 and RH41) with IC
50
values ranging from 0.1 to 113 nM. Although Adnectins bound to EGFR at a site distinct from those of anti-EGFR antibodies cetuximab, panitumumab and nimotuzumab, like the antibodies, the anti-EGFR Adnectins blocked the binding of EGF to EGFR. PEGylated EI-Tandem inhibited the growth of both EGFR and IGF-IR driven human tumor xenografts, induced degradation of EGFR, and reduced EGFR phosphorylation in tumors. These results demonstrate efficient engineering of bispecific Adnectins with high potency and desired specificity. The bispecificity may improve biological activity compared to monospecific biologics as tumor growth is driven by multiple growth factors. Our results illustrate a technological advancement for constructing multi-specific biologics in cancer therapy. |
doi_str_mv | 10.4161/mabs.3.1.14168 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_lande</sourceid><recordid>TN_cdi_landesbioscience_primary_mabs_article_14168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21099371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-8cc56dd35ed55cf05e7b2e2f317bee6c558457665e0012237b9a20283843d8853</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSMEolXpliXyCyT4Z5yfDdJQFahUxAJYW4593bngsSM7Q9UX4LlxOjRqFwhvfK17vuNrn6p6zWizYS17u9djbkTDGlaO_bPqlA0bXtO-o8_XuuUn1XnOP-iyOso6-rI64YwOg-jYafV7SxyOKQYwMwaSjXYuekv0NKWozY7MkYyYJzDo0BAMOxxxjimT6AhMaCHttSc3Kd7OO-K0KT2SwMC0FDrYguSDx1B7_AlPdfXVqnxVvXDaZzj_u59V3z9cfrv4VF9_-Xh1sb2ujRzYXPfGyNZaIcFKaRyV0I0cuBOsGwFaI2W_kV3bSqCUcS66cdCc8l70G2H7Xoqz6t3RdzqMe7AGwpy0V1PCvU53KmpUTzsBd-om_lKCip4yWgyao4FJMecEbmUZVUsoaglFCcXUfSgFePP4xlX-EEER8KPAl9-CPGLMBiEYWKX3jjrNaDysrv-DLvc6HMB_3r7_ugwzWVeg4QhhcLHEdhuTt2rWdz4ml3QwWAb_xzP-AHQCxTs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Emanuel, Stuart L. ; Engle, Linda J. ; Chao, Ginger ; Zhu, Rong-Rong ; Cao, Carolyn ; Lin, Zheng ; Yamniuk, Aaron P. ; Hosbach, Jennifer ; Brown, Jennifer ; Fitzpatrick, Elizabeth ; Gokemeijer, Jochem ; Morin, Paul ; Morse, Brent A. ; Carvajal, Irvith M. ; Fabrizio, David ; Wright, Martin C. ; Das Gupta, Ruchira ; Gosselin, Michael ; Cataldo, Daniel ; Ryseck, Rolf P. ; Doyle, Michael L. ; Wong, Tai W. ; Camphausen, Raymond T. ; Cload, Sharon T. ; Marsh, H. Nicholas ; Gottardis, Marco M. ; Furfine, Eric S.</creator><creatorcontrib>Emanuel, Stuart L. ; Engle, Linda J. ; Chao, Ginger ; Zhu, Rong-Rong ; Cao, Carolyn ; Lin, Zheng ; Yamniuk, Aaron P. ; Hosbach, Jennifer ; Brown, Jennifer ; Fitzpatrick, Elizabeth ; Gokemeijer, Jochem ; Morin, Paul ; Morse, Brent A. ; Carvajal, Irvith M. ; Fabrizio, David ; Wright, Martin C. ; Das Gupta, Ruchira ; Gosselin, Michael ; Cataldo, Daniel ; Ryseck, Rolf P. ; Doyle, Michael L. ; Wong, Tai W. ; Camphausen, Raymond T. ; Cload, Sharon T. ; Marsh, H. Nicholas ; Gottardis, Marco M. ; Furfine, Eric S.</creatorcontrib><description>Engineered domains of human fibronectin (Adnectins™) were used to generate a bispecific Adnectin targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR), two transmembrane receptors that mediate proliferative and survival cell signaling in cancer. Single-domain Adnectins that specifically bind EGFR or IGF-IR were generated using mRNA display with a library containing as many as 10
13
Adnectin variants. mRNA display was also used to optimize lead Adnectin affinities, resulting in clones that inhibited EGFR phosphorylation at 7 to 38 nM compared to 2.6 μM for the parental clone. Individual, optimized, Adnectins specific for blocking either EGFR or IGF-IR signaling were engineered into a single protein (EI-Tandem Adnectin). The EI-Tandems inhibited phosphorylation of EGFR and IGF-IR, induced receptor degradation, and inhibited down-stream cell signaling and proliferation of human cancer cell lines (A431, H292, BxPC3 and RH41) with IC
50
values ranging from 0.1 to 113 nM. Although Adnectins bound to EGFR at a site distinct from those of anti-EGFR antibodies cetuximab, panitumumab and nimotuzumab, like the antibodies, the anti-EGFR Adnectins blocked the binding of EGF to EGFR. PEGylated EI-Tandem inhibited the growth of both EGFR and IGF-IR driven human tumor xenografts, induced degradation of EGFR, and reduced EGFR phosphorylation in tumors. These results demonstrate efficient engineering of bispecific Adnectins with high potency and desired specificity. The bispecificity may improve biological activity compared to monospecific biologics as tumor growth is driven by multiple growth factors. Our results illustrate a technological advancement for constructing multi-specific biologics in cancer therapy.</description><identifier>ISSN: 1942-0862</identifier><identifier>EISSN: 1942-0870</identifier><identifier>DOI: 10.4161/mabs.3.1.14168</identifier><identifier>PMID: 21099371</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>Amino Acid Sequence ; Animals ; Antibodies, Monoclonal - metabolism ; Antibodies, Monoclonal - pharmacology ; Antibodies, Monoclonal, Humanized ; Binding ; Biology ; Bioscience ; Calcium ; Cancer ; Cell ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Cycle ; Dose-Response Relationship, Drug ; ErbB Receptors - antagonists & inhibitors ; ErbB Receptors - metabolism ; Female ; Fibronectins - chemistry ; Humans ; Immunoblotting ; Kinetics ; Landes ; Mice ; Mice, Nude ; Molecular Sequence Data ; Organogenesis ; Panitumumab ; Peptide Fragments - metabolism ; Peptide Fragments - pharmacology ; Phosphorylation - drug effects ; Protein Binding ; Proteins ; Receptor, IGF Type 1 - antagonists & inhibitors ; Receptor, IGF Type 1 - metabolism ; Signal Transduction - drug effects ; Tumor Burden - drug effects ; Xenograft Model Antitumor Assays</subject><ispartof>mAbs, 2011-01, Vol.3 (1), p.38-48</ispartof><rights>Copyright © 2011 Landes Bioscience 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-8cc56dd35ed55cf05e7b2e2f317bee6c558457665e0012237b9a20283843d8853</citedby><cites>FETCH-LOGICAL-c591t-8cc56dd35ed55cf05e7b2e2f317bee6c558457665e0012237b9a20283843d8853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038010/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038010/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21099371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Emanuel, Stuart L.</creatorcontrib><creatorcontrib>Engle, Linda J.</creatorcontrib><creatorcontrib>Chao, Ginger</creatorcontrib><creatorcontrib>Zhu, Rong-Rong</creatorcontrib><creatorcontrib>Cao, Carolyn</creatorcontrib><creatorcontrib>Lin, Zheng</creatorcontrib><creatorcontrib>Yamniuk, Aaron P.</creatorcontrib><creatorcontrib>Hosbach, Jennifer</creatorcontrib><creatorcontrib>Brown, Jennifer</creatorcontrib><creatorcontrib>Fitzpatrick, Elizabeth</creatorcontrib><creatorcontrib>Gokemeijer, Jochem</creatorcontrib><creatorcontrib>Morin, Paul</creatorcontrib><creatorcontrib>Morse, Brent A.</creatorcontrib><creatorcontrib>Carvajal, Irvith M.</creatorcontrib><creatorcontrib>Fabrizio, David</creatorcontrib><creatorcontrib>Wright, Martin C.</creatorcontrib><creatorcontrib>Das Gupta, Ruchira</creatorcontrib><creatorcontrib>Gosselin, Michael</creatorcontrib><creatorcontrib>Cataldo, Daniel</creatorcontrib><creatorcontrib>Ryseck, Rolf P.</creatorcontrib><creatorcontrib>Doyle, Michael L.</creatorcontrib><creatorcontrib>Wong, Tai W.</creatorcontrib><creatorcontrib>Camphausen, Raymond T.</creatorcontrib><creatorcontrib>Cload, Sharon T.</creatorcontrib><creatorcontrib>Marsh, H. Nicholas</creatorcontrib><creatorcontrib>Gottardis, Marco M.</creatorcontrib><creatorcontrib>Furfine, Eric S.</creatorcontrib><title>A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor</title><title>mAbs</title><addtitle>MAbs</addtitle><description>Engineered domains of human fibronectin (Adnectins™) were used to generate a bispecific Adnectin targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR), two transmembrane receptors that mediate proliferative and survival cell signaling in cancer. Single-domain Adnectins that specifically bind EGFR or IGF-IR were generated using mRNA display with a library containing as many as 10
13
Adnectin variants. mRNA display was also used to optimize lead Adnectin affinities, resulting in clones that inhibited EGFR phosphorylation at 7 to 38 nM compared to 2.6 μM for the parental clone. Individual, optimized, Adnectins specific for blocking either EGFR or IGF-IR signaling were engineered into a single protein (EI-Tandem Adnectin). The EI-Tandems inhibited phosphorylation of EGFR and IGF-IR, induced receptor degradation, and inhibited down-stream cell signaling and proliferation of human cancer cell lines (A431, H292, BxPC3 and RH41) with IC
50
values ranging from 0.1 to 113 nM. Although Adnectins bound to EGFR at a site distinct from those of anti-EGFR antibodies cetuximab, panitumumab and nimotuzumab, like the antibodies, the anti-EGFR Adnectins blocked the binding of EGF to EGFR. PEGylated EI-Tandem inhibited the growth of both EGFR and IGF-IR driven human tumor xenografts, induced degradation of EGFR, and reduced EGFR phosphorylation in tumors. These results demonstrate efficient engineering of bispecific Adnectins with high potency and desired specificity. The bispecificity may improve biological activity compared to monospecific biologics as tumor growth is driven by multiple growth factors. Our results illustrate a technological advancement for constructing multi-specific biologics in cancer therapy.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antibodies, Monoclonal - metabolism</subject><subject>Antibodies, Monoclonal - pharmacology</subject><subject>Antibodies, Monoclonal, Humanized</subject><subject>Binding</subject><subject>Biology</subject><subject>Bioscience</subject><subject>Calcium</subject><subject>Cancer</subject><subject>Cell</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Cycle</subject><subject>Dose-Response Relationship, Drug</subject><subject>ErbB Receptors - antagonists & inhibitors</subject><subject>ErbB Receptors - metabolism</subject><subject>Female</subject><subject>Fibronectins - chemistry</subject><subject>Humans</subject><subject>Immunoblotting</subject><subject>Kinetics</subject><subject>Landes</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Molecular Sequence Data</subject><subject>Organogenesis</subject><subject>Panitumumab</subject><subject>Peptide Fragments - metabolism</subject><subject>Peptide Fragments - pharmacology</subject><subject>Phosphorylation - drug effects</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Receptor, IGF Type 1 - antagonists & inhibitors</subject><subject>Receptor, IGF Type 1 - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Tumor Burden - drug effects</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1942-0862</issn><issn>1942-0870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhSMEolXpliXyCyT4Z5yfDdJQFahUxAJYW4593bngsSM7Q9UX4LlxOjRqFwhvfK17vuNrn6p6zWizYS17u9djbkTDGlaO_bPqlA0bXtO-o8_XuuUn1XnOP-iyOso6-rI64YwOg-jYafV7SxyOKQYwMwaSjXYuekv0NKWozY7MkYyYJzDo0BAMOxxxjimT6AhMaCHttSc3Kd7OO-K0KT2SwMC0FDrYguSDx1B7_AlPdfXVqnxVvXDaZzj_u59V3z9cfrv4VF9_-Xh1sb2ujRzYXPfGyNZaIcFKaRyV0I0cuBOsGwFaI2W_kV3bSqCUcS66cdCc8l70G2H7Xoqz6t3RdzqMe7AGwpy0V1PCvU53KmpUTzsBd-om_lKCip4yWgyao4FJMecEbmUZVUsoaglFCcXUfSgFePP4xlX-EEER8KPAl9-CPGLMBiEYWKX3jjrNaDysrv-DLvc6HMB_3r7_ugwzWVeg4QhhcLHEdhuTt2rWdz4ml3QwWAb_xzP-AHQCxTs</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Emanuel, Stuart L.</creator><creator>Engle, Linda J.</creator><creator>Chao, Ginger</creator><creator>Zhu, Rong-Rong</creator><creator>Cao, Carolyn</creator><creator>Lin, Zheng</creator><creator>Yamniuk, Aaron P.</creator><creator>Hosbach, Jennifer</creator><creator>Brown, Jennifer</creator><creator>Fitzpatrick, Elizabeth</creator><creator>Gokemeijer, Jochem</creator><creator>Morin, Paul</creator><creator>Morse, Brent A.</creator><creator>Carvajal, Irvith M.</creator><creator>Fabrizio, David</creator><creator>Wright, Martin C.</creator><creator>Das Gupta, Ruchira</creator><creator>Gosselin, Michael</creator><creator>Cataldo, Daniel</creator><creator>Ryseck, Rolf P.</creator><creator>Doyle, Michael L.</creator><creator>Wong, Tai W.</creator><creator>Camphausen, Raymond T.</creator><creator>Cload, Sharon T.</creator><creator>Marsh, H. Nicholas</creator><creator>Gottardis, Marco M.</creator><creator>Furfine, Eric S.</creator><general>Taylor & Francis</general><general>Landes Bioscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110101</creationdate><title>A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor</title><author>Emanuel, Stuart L. ; Engle, Linda J. ; Chao, Ginger ; Zhu, Rong-Rong ; Cao, Carolyn ; Lin, Zheng ; Yamniuk, Aaron P. ; Hosbach, Jennifer ; Brown, Jennifer ; Fitzpatrick, Elizabeth ; Gokemeijer, Jochem ; Morin, Paul ; Morse, Brent A. ; Carvajal, Irvith M. ; Fabrizio, David ; Wright, Martin C. ; Das Gupta, Ruchira ; Gosselin, Michael ; Cataldo, Daniel ; Ryseck, Rolf P. ; Doyle, Michael L. ; Wong, Tai W. ; Camphausen, Raymond T. ; Cload, Sharon T. ; Marsh, H. Nicholas ; Gottardis, Marco M. ; Furfine, Eric S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-8cc56dd35ed55cf05e7b2e2f317bee6c558457665e0012237b9a20283843d8853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antibodies, Monoclonal - metabolism</topic><topic>Antibodies, Monoclonal - pharmacology</topic><topic>Antibodies, Monoclonal, Humanized</topic><topic>Binding</topic><topic>Biology</topic><topic>Bioscience</topic><topic>Calcium</topic><topic>Cancer</topic><topic>Cell</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Cycle</topic><topic>Dose-Response Relationship, Drug</topic><topic>ErbB Receptors - antagonists & inhibitors</topic><topic>ErbB Receptors - metabolism</topic><topic>Female</topic><topic>Fibronectins - chemistry</topic><topic>Humans</topic><topic>Immunoblotting</topic><topic>Kinetics</topic><topic>Landes</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Molecular Sequence Data</topic><topic>Organogenesis</topic><topic>Panitumumab</topic><topic>Peptide Fragments - metabolism</topic><topic>Peptide Fragments - pharmacology</topic><topic>Phosphorylation - drug effects</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Receptor, IGF Type 1 - antagonists & inhibitors</topic><topic>Receptor, IGF Type 1 - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Tumor Burden - drug effects</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emanuel, Stuart L.</creatorcontrib><creatorcontrib>Engle, Linda J.</creatorcontrib><creatorcontrib>Chao, Ginger</creatorcontrib><creatorcontrib>Zhu, Rong-Rong</creatorcontrib><creatorcontrib>Cao, Carolyn</creatorcontrib><creatorcontrib>Lin, Zheng</creatorcontrib><creatorcontrib>Yamniuk, Aaron P.</creatorcontrib><creatorcontrib>Hosbach, Jennifer</creatorcontrib><creatorcontrib>Brown, Jennifer</creatorcontrib><creatorcontrib>Fitzpatrick, Elizabeth</creatorcontrib><creatorcontrib>Gokemeijer, Jochem</creatorcontrib><creatorcontrib>Morin, Paul</creatorcontrib><creatorcontrib>Morse, Brent A.</creatorcontrib><creatorcontrib>Carvajal, Irvith M.</creatorcontrib><creatorcontrib>Fabrizio, David</creatorcontrib><creatorcontrib>Wright, Martin C.</creatorcontrib><creatorcontrib>Das Gupta, Ruchira</creatorcontrib><creatorcontrib>Gosselin, Michael</creatorcontrib><creatorcontrib>Cataldo, Daniel</creatorcontrib><creatorcontrib>Ryseck, Rolf P.</creatorcontrib><creatorcontrib>Doyle, Michael L.</creatorcontrib><creatorcontrib>Wong, Tai W.</creatorcontrib><creatorcontrib>Camphausen, Raymond T.</creatorcontrib><creatorcontrib>Cload, Sharon T.</creatorcontrib><creatorcontrib>Marsh, H. Nicholas</creatorcontrib><creatorcontrib>Gottardis, Marco M.</creatorcontrib><creatorcontrib>Furfine, Eric S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>mAbs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emanuel, Stuart L.</au><au>Engle, Linda J.</au><au>Chao, Ginger</au><au>Zhu, Rong-Rong</au><au>Cao, Carolyn</au><au>Lin, Zheng</au><au>Yamniuk, Aaron P.</au><au>Hosbach, Jennifer</au><au>Brown, Jennifer</au><au>Fitzpatrick, Elizabeth</au><au>Gokemeijer, Jochem</au><au>Morin, Paul</au><au>Morse, Brent A.</au><au>Carvajal, Irvith M.</au><au>Fabrizio, David</au><au>Wright, Martin C.</au><au>Das Gupta, Ruchira</au><au>Gosselin, Michael</au><au>Cataldo, Daniel</au><au>Ryseck, Rolf P.</au><au>Doyle, Michael L.</au><au>Wong, Tai W.</au><au>Camphausen, Raymond T.</au><au>Cload, Sharon T.</au><au>Marsh, H. Nicholas</au><au>Gottardis, Marco M.</au><au>Furfine, Eric S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor</atitle><jtitle>mAbs</jtitle><addtitle>MAbs</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>3</volume><issue>1</issue><spage>38</spage><epage>48</epage><pages>38-48</pages><issn>1942-0862</issn><eissn>1942-0870</eissn><abstract>Engineered domains of human fibronectin (Adnectins™) were used to generate a bispecific Adnectin targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR), two transmembrane receptors that mediate proliferative and survival cell signaling in cancer. Single-domain Adnectins that specifically bind EGFR or IGF-IR were generated using mRNA display with a library containing as many as 10
13
Adnectin variants. mRNA display was also used to optimize lead Adnectin affinities, resulting in clones that inhibited EGFR phosphorylation at 7 to 38 nM compared to 2.6 μM for the parental clone. Individual, optimized, Adnectins specific for blocking either EGFR or IGF-IR signaling were engineered into a single protein (EI-Tandem Adnectin). The EI-Tandems inhibited phosphorylation of EGFR and IGF-IR, induced receptor degradation, and inhibited down-stream cell signaling and proliferation of human cancer cell lines (A431, H292, BxPC3 and RH41) with IC
50
values ranging from 0.1 to 113 nM. Although Adnectins bound to EGFR at a site distinct from those of anti-EGFR antibodies cetuximab, panitumumab and nimotuzumab, like the antibodies, the anti-EGFR Adnectins blocked the binding of EGF to EGFR. PEGylated EI-Tandem inhibited the growth of both EGFR and IGF-IR driven human tumor xenografts, induced degradation of EGFR, and reduced EGFR phosphorylation in tumors. These results demonstrate efficient engineering of bispecific Adnectins with high potency and desired specificity. The bispecificity may improve biological activity compared to monospecific biologics as tumor growth is driven by multiple growth factors. Our results illustrate a technological advancement for constructing multi-specific biologics in cancer therapy.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>21099371</pmid><doi>10.4161/mabs.3.1.14168</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1942-0862 |
ispartof | mAbs, 2011-01, Vol.3 (1), p.38-48 |
issn | 1942-0862 1942-0870 |
language | eng |
recordid | cdi_landesbioscience_primary_mabs_article_14168 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Amino Acid Sequence Animals Antibodies, Monoclonal - metabolism Antibodies, Monoclonal - pharmacology Antibodies, Monoclonal, Humanized Binding Biology Bioscience Calcium Cancer Cell Cell Line, Tumor Cell Proliferation - drug effects Cycle Dose-Response Relationship, Drug ErbB Receptors - antagonists & inhibitors ErbB Receptors - metabolism Female Fibronectins - chemistry Humans Immunoblotting Kinetics Landes Mice Mice, Nude Molecular Sequence Data Organogenesis Panitumumab Peptide Fragments - metabolism Peptide Fragments - pharmacology Phosphorylation - drug effects Protein Binding Proteins Receptor, IGF Type 1 - antagonists & inhibitors Receptor, IGF Type 1 - metabolism Signal Transduction - drug effects Tumor Burden - drug effects Xenograft Model Antitumor Assays |
title | A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_lande&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fibronectin%20scaffold%20approach%20to%20bispecific%20inhibitors%20of%20epidermal%20growth%20factor%20receptor%20and%20insulin-like%20growth%20factor-I%20receptor&rft.jtitle=mAbs&rft.au=Emanuel,%20Stuart%20L.&rft.date=2011-01-01&rft.volume=3&rft.issue=1&rft.spage=38&rft.epage=48&rft.pages=38-48&rft.issn=1942-0862&rft.eissn=1942-0870&rft_id=info:doi/10.4161/mabs.3.1.14168&rft_dat=%3Cpubmed_lande%3E21099371%3C/pubmed_lande%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21099371&rfr_iscdi=true |