A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor

Engineered domains of human fibronectin (Adnectins™) were used to generate a bispecific Adnectin targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR), two transmembrane receptors that mediate proliferative and survival cell signaling in cancer. Single-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:mAbs 2011-01, Vol.3 (1), p.38-48
Hauptverfasser: Emanuel, Stuart L., Engle, Linda J., Chao, Ginger, Zhu, Rong-Rong, Cao, Carolyn, Lin, Zheng, Yamniuk, Aaron P., Hosbach, Jennifer, Brown, Jennifer, Fitzpatrick, Elizabeth, Gokemeijer, Jochem, Morin, Paul, Morse, Brent A., Carvajal, Irvith M., Fabrizio, David, Wright, Martin C., Das Gupta, Ruchira, Gosselin, Michael, Cataldo, Daniel, Ryseck, Rolf P., Doyle, Michael L., Wong, Tai W., Camphausen, Raymond T., Cload, Sharon T., Marsh, H. Nicholas, Gottardis, Marco M., Furfine, Eric S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 38
container_title mAbs
container_volume 3
creator Emanuel, Stuart L.
Engle, Linda J.
Chao, Ginger
Zhu, Rong-Rong
Cao, Carolyn
Lin, Zheng
Yamniuk, Aaron P.
Hosbach, Jennifer
Brown, Jennifer
Fitzpatrick, Elizabeth
Gokemeijer, Jochem
Morin, Paul
Morse, Brent A.
Carvajal, Irvith M.
Fabrizio, David
Wright, Martin C.
Das Gupta, Ruchira
Gosselin, Michael
Cataldo, Daniel
Ryseck, Rolf P.
Doyle, Michael L.
Wong, Tai W.
Camphausen, Raymond T.
Cload, Sharon T.
Marsh, H. Nicholas
Gottardis, Marco M.
Furfine, Eric S.
description Engineered domains of human fibronectin (Adnectins™) were used to generate a bispecific Adnectin targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR), two transmembrane receptors that mediate proliferative and survival cell signaling in cancer. Single-domain Adnectins that specifically bind EGFR or IGF-IR were generated using mRNA display with a library containing as many as 10 13 Adnectin variants. mRNA display was also used to optimize lead Adnectin affinities, resulting in clones that inhibited EGFR phosphorylation at 7 to 38 nM compared to 2.6 μM for the parental clone. Individual, optimized, Adnectins specific for blocking either EGFR or IGF-IR signaling were engineered into a single protein (EI-Tandem Adnectin). The EI-Tandems inhibited phosphorylation of EGFR and IGF-IR, induced receptor degradation, and inhibited down-stream cell signaling and proliferation of human cancer cell lines (A431, H292, BxPC3 and RH41) with IC 50 values ranging from 0.1 to 113 nM. Although Adnectins bound to EGFR at a site distinct from those of anti-EGFR antibodies cetuximab, panitumumab and nimotuzumab, like the antibodies, the anti-EGFR Adnectins blocked the binding of EGF to EGFR. PEGylated EI-Tandem inhibited the growth of both EGFR and IGF-IR driven human tumor xenografts, induced degradation of EGFR, and reduced EGFR phosphorylation in tumors. These results demonstrate efficient engineering of bispecific Adnectins with high potency and desired specificity. The bispecificity may improve biological activity compared to monospecific biologics as tumor growth is driven by multiple growth factors. Our results illustrate a technological advancement for constructing multi-specific biologics in cancer therapy.
doi_str_mv 10.4161/mabs.3.1.14168
format Article
fullrecord <record><control><sourceid>pubmed_lande</sourceid><recordid>TN_cdi_landesbioscience_primary_mabs_article_14168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21099371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-8cc56dd35ed55cf05e7b2e2f317bee6c558457665e0012237b9a20283843d8853</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhSMEolXpliXyCyT4Z5yfDdJQFahUxAJYW4593bngsSM7Q9UX4LlxOjRqFwhvfK17vuNrn6p6zWizYS17u9djbkTDGlaO_bPqlA0bXtO-o8_XuuUn1XnOP-iyOso6-rI64YwOg-jYafV7SxyOKQYwMwaSjXYuekv0NKWozY7MkYyYJzDo0BAMOxxxjimT6AhMaCHttSc3Kd7OO-K0KT2SwMC0FDrYguSDx1B7_AlPdfXVqnxVvXDaZzj_u59V3z9cfrv4VF9_-Xh1sb2ujRzYXPfGyNZaIcFKaRyV0I0cuBOsGwFaI2W_kV3bSqCUcS66cdCc8l70G2H7Xoqz6t3RdzqMe7AGwpy0V1PCvU53KmpUTzsBd-om_lKCip4yWgyao4FJMecEbmUZVUsoaglFCcXUfSgFePP4xlX-EEER8KPAl9-CPGLMBiEYWKX3jjrNaDysrv-DLvc6HMB_3r7_ugwzWVeg4QhhcLHEdhuTt2rWdz4ml3QwWAb_xzP-AHQCxTs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Emanuel, Stuart L. ; Engle, Linda J. ; Chao, Ginger ; Zhu, Rong-Rong ; Cao, Carolyn ; Lin, Zheng ; Yamniuk, Aaron P. ; Hosbach, Jennifer ; Brown, Jennifer ; Fitzpatrick, Elizabeth ; Gokemeijer, Jochem ; Morin, Paul ; Morse, Brent A. ; Carvajal, Irvith M. ; Fabrizio, David ; Wright, Martin C. ; Das Gupta, Ruchira ; Gosselin, Michael ; Cataldo, Daniel ; Ryseck, Rolf P. ; Doyle, Michael L. ; Wong, Tai W. ; Camphausen, Raymond T. ; Cload, Sharon T. ; Marsh, H. Nicholas ; Gottardis, Marco M. ; Furfine, Eric S.</creator><creatorcontrib>Emanuel, Stuart L. ; Engle, Linda J. ; Chao, Ginger ; Zhu, Rong-Rong ; Cao, Carolyn ; Lin, Zheng ; Yamniuk, Aaron P. ; Hosbach, Jennifer ; Brown, Jennifer ; Fitzpatrick, Elizabeth ; Gokemeijer, Jochem ; Morin, Paul ; Morse, Brent A. ; Carvajal, Irvith M. ; Fabrizio, David ; Wright, Martin C. ; Das Gupta, Ruchira ; Gosselin, Michael ; Cataldo, Daniel ; Ryseck, Rolf P. ; Doyle, Michael L. ; Wong, Tai W. ; Camphausen, Raymond T. ; Cload, Sharon T. ; Marsh, H. Nicholas ; Gottardis, Marco M. ; Furfine, Eric S.</creatorcontrib><description>Engineered domains of human fibronectin (Adnectins™) were used to generate a bispecific Adnectin targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR), two transmembrane receptors that mediate proliferative and survival cell signaling in cancer. Single-domain Adnectins that specifically bind EGFR or IGF-IR were generated using mRNA display with a library containing as many as 10 13 Adnectin variants. mRNA display was also used to optimize lead Adnectin affinities, resulting in clones that inhibited EGFR phosphorylation at 7 to 38 nM compared to 2.6 μM for the parental clone. Individual, optimized, Adnectins specific for blocking either EGFR or IGF-IR signaling were engineered into a single protein (EI-Tandem Adnectin). The EI-Tandems inhibited phosphorylation of EGFR and IGF-IR, induced receptor degradation, and inhibited down-stream cell signaling and proliferation of human cancer cell lines (A431, H292, BxPC3 and RH41) with IC 50 values ranging from 0.1 to 113 nM. Although Adnectins bound to EGFR at a site distinct from those of anti-EGFR antibodies cetuximab, panitumumab and nimotuzumab, like the antibodies, the anti-EGFR Adnectins blocked the binding of EGF to EGFR. PEGylated EI-Tandem inhibited the growth of both EGFR and IGF-IR driven human tumor xenografts, induced degradation of EGFR, and reduced EGFR phosphorylation in tumors. These results demonstrate efficient engineering of bispecific Adnectins with high potency and desired specificity. The bispecificity may improve biological activity compared to monospecific biologics as tumor growth is driven by multiple growth factors. Our results illustrate a technological advancement for constructing multi-specific biologics in cancer therapy.</description><identifier>ISSN: 1942-0862</identifier><identifier>EISSN: 1942-0870</identifier><identifier>DOI: 10.4161/mabs.3.1.14168</identifier><identifier>PMID: 21099371</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Amino Acid Sequence ; Animals ; Antibodies, Monoclonal - metabolism ; Antibodies, Monoclonal - pharmacology ; Antibodies, Monoclonal, Humanized ; Binding ; Biology ; Bioscience ; Calcium ; Cancer ; Cell ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Cycle ; Dose-Response Relationship, Drug ; ErbB Receptors - antagonists &amp; inhibitors ; ErbB Receptors - metabolism ; Female ; Fibronectins - chemistry ; Humans ; Immunoblotting ; Kinetics ; Landes ; Mice ; Mice, Nude ; Molecular Sequence Data ; Organogenesis ; Panitumumab ; Peptide Fragments - metabolism ; Peptide Fragments - pharmacology ; Phosphorylation - drug effects ; Protein Binding ; Proteins ; Receptor, IGF Type 1 - antagonists &amp; inhibitors ; Receptor, IGF Type 1 - metabolism ; Signal Transduction - drug effects ; Tumor Burden - drug effects ; Xenograft Model Antitumor Assays</subject><ispartof>mAbs, 2011-01, Vol.3 (1), p.38-48</ispartof><rights>Copyright © 2011 Landes Bioscience 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-8cc56dd35ed55cf05e7b2e2f317bee6c558457665e0012237b9a20283843d8853</citedby><cites>FETCH-LOGICAL-c591t-8cc56dd35ed55cf05e7b2e2f317bee6c558457665e0012237b9a20283843d8853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038010/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3038010/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21099371$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Emanuel, Stuart L.</creatorcontrib><creatorcontrib>Engle, Linda J.</creatorcontrib><creatorcontrib>Chao, Ginger</creatorcontrib><creatorcontrib>Zhu, Rong-Rong</creatorcontrib><creatorcontrib>Cao, Carolyn</creatorcontrib><creatorcontrib>Lin, Zheng</creatorcontrib><creatorcontrib>Yamniuk, Aaron P.</creatorcontrib><creatorcontrib>Hosbach, Jennifer</creatorcontrib><creatorcontrib>Brown, Jennifer</creatorcontrib><creatorcontrib>Fitzpatrick, Elizabeth</creatorcontrib><creatorcontrib>Gokemeijer, Jochem</creatorcontrib><creatorcontrib>Morin, Paul</creatorcontrib><creatorcontrib>Morse, Brent A.</creatorcontrib><creatorcontrib>Carvajal, Irvith M.</creatorcontrib><creatorcontrib>Fabrizio, David</creatorcontrib><creatorcontrib>Wright, Martin C.</creatorcontrib><creatorcontrib>Das Gupta, Ruchira</creatorcontrib><creatorcontrib>Gosselin, Michael</creatorcontrib><creatorcontrib>Cataldo, Daniel</creatorcontrib><creatorcontrib>Ryseck, Rolf P.</creatorcontrib><creatorcontrib>Doyle, Michael L.</creatorcontrib><creatorcontrib>Wong, Tai W.</creatorcontrib><creatorcontrib>Camphausen, Raymond T.</creatorcontrib><creatorcontrib>Cload, Sharon T.</creatorcontrib><creatorcontrib>Marsh, H. Nicholas</creatorcontrib><creatorcontrib>Gottardis, Marco M.</creatorcontrib><creatorcontrib>Furfine, Eric S.</creatorcontrib><title>A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor</title><title>mAbs</title><addtitle>MAbs</addtitle><description>Engineered domains of human fibronectin (Adnectins™) were used to generate a bispecific Adnectin targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR), two transmembrane receptors that mediate proliferative and survival cell signaling in cancer. Single-domain Adnectins that specifically bind EGFR or IGF-IR were generated using mRNA display with a library containing as many as 10 13 Adnectin variants. mRNA display was also used to optimize lead Adnectin affinities, resulting in clones that inhibited EGFR phosphorylation at 7 to 38 nM compared to 2.6 μM for the parental clone. Individual, optimized, Adnectins specific for blocking either EGFR or IGF-IR signaling were engineered into a single protein (EI-Tandem Adnectin). The EI-Tandems inhibited phosphorylation of EGFR and IGF-IR, induced receptor degradation, and inhibited down-stream cell signaling and proliferation of human cancer cell lines (A431, H292, BxPC3 and RH41) with IC 50 values ranging from 0.1 to 113 nM. Although Adnectins bound to EGFR at a site distinct from those of anti-EGFR antibodies cetuximab, panitumumab and nimotuzumab, like the antibodies, the anti-EGFR Adnectins blocked the binding of EGF to EGFR. PEGylated EI-Tandem inhibited the growth of both EGFR and IGF-IR driven human tumor xenografts, induced degradation of EGFR, and reduced EGFR phosphorylation in tumors. These results demonstrate efficient engineering of bispecific Adnectins with high potency and desired specificity. The bispecificity may improve biological activity compared to monospecific biologics as tumor growth is driven by multiple growth factors. Our results illustrate a technological advancement for constructing multi-specific biologics in cancer therapy.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Antibodies, Monoclonal - metabolism</subject><subject>Antibodies, Monoclonal - pharmacology</subject><subject>Antibodies, Monoclonal, Humanized</subject><subject>Binding</subject><subject>Biology</subject><subject>Bioscience</subject><subject>Calcium</subject><subject>Cancer</subject><subject>Cell</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Cycle</subject><subject>Dose-Response Relationship, Drug</subject><subject>ErbB Receptors - antagonists &amp; inhibitors</subject><subject>ErbB Receptors - metabolism</subject><subject>Female</subject><subject>Fibronectins - chemistry</subject><subject>Humans</subject><subject>Immunoblotting</subject><subject>Kinetics</subject><subject>Landes</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Molecular Sequence Data</subject><subject>Organogenesis</subject><subject>Panitumumab</subject><subject>Peptide Fragments - metabolism</subject><subject>Peptide Fragments - pharmacology</subject><subject>Phosphorylation - drug effects</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Receptor, IGF Type 1 - antagonists &amp; inhibitors</subject><subject>Receptor, IGF Type 1 - metabolism</subject><subject>Signal Transduction - drug effects</subject><subject>Tumor Burden - drug effects</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1942-0862</issn><issn>1942-0870</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhSMEolXpliXyCyT4Z5yfDdJQFahUxAJYW4593bngsSM7Q9UX4LlxOjRqFwhvfK17vuNrn6p6zWizYS17u9djbkTDGlaO_bPqlA0bXtO-o8_XuuUn1XnOP-iyOso6-rI64YwOg-jYafV7SxyOKQYwMwaSjXYuekv0NKWozY7MkYyYJzDo0BAMOxxxjimT6AhMaCHttSc3Kd7OO-K0KT2SwMC0FDrYguSDx1B7_AlPdfXVqnxVvXDaZzj_u59V3z9cfrv4VF9_-Xh1sb2ujRzYXPfGyNZaIcFKaRyV0I0cuBOsGwFaI2W_kV3bSqCUcS66cdCc8l70G2H7Xoqz6t3RdzqMe7AGwpy0V1PCvU53KmpUTzsBd-om_lKCip4yWgyao4FJMecEbmUZVUsoaglFCcXUfSgFePP4xlX-EEER8KPAl9-CPGLMBiEYWKX3jjrNaDysrv-DLvc6HMB_3r7_ugwzWVeg4QhhcLHEdhuTt2rWdz4ml3QwWAb_xzP-AHQCxTs</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Emanuel, Stuart L.</creator><creator>Engle, Linda J.</creator><creator>Chao, Ginger</creator><creator>Zhu, Rong-Rong</creator><creator>Cao, Carolyn</creator><creator>Lin, Zheng</creator><creator>Yamniuk, Aaron P.</creator><creator>Hosbach, Jennifer</creator><creator>Brown, Jennifer</creator><creator>Fitzpatrick, Elizabeth</creator><creator>Gokemeijer, Jochem</creator><creator>Morin, Paul</creator><creator>Morse, Brent A.</creator><creator>Carvajal, Irvith M.</creator><creator>Fabrizio, David</creator><creator>Wright, Martin C.</creator><creator>Das Gupta, Ruchira</creator><creator>Gosselin, Michael</creator><creator>Cataldo, Daniel</creator><creator>Ryseck, Rolf P.</creator><creator>Doyle, Michael L.</creator><creator>Wong, Tai W.</creator><creator>Camphausen, Raymond T.</creator><creator>Cload, Sharon T.</creator><creator>Marsh, H. Nicholas</creator><creator>Gottardis, Marco M.</creator><creator>Furfine, Eric S.</creator><general>Taylor &amp; Francis</general><general>Landes Bioscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20110101</creationdate><title>A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor</title><author>Emanuel, Stuart L. ; Engle, Linda J. ; Chao, Ginger ; Zhu, Rong-Rong ; Cao, Carolyn ; Lin, Zheng ; Yamniuk, Aaron P. ; Hosbach, Jennifer ; Brown, Jennifer ; Fitzpatrick, Elizabeth ; Gokemeijer, Jochem ; Morin, Paul ; Morse, Brent A. ; Carvajal, Irvith M. ; Fabrizio, David ; Wright, Martin C. ; Das Gupta, Ruchira ; Gosselin, Michael ; Cataldo, Daniel ; Ryseck, Rolf P. ; Doyle, Michael L. ; Wong, Tai W. ; Camphausen, Raymond T. ; Cload, Sharon T. ; Marsh, H. Nicholas ; Gottardis, Marco M. ; Furfine, Eric S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-8cc56dd35ed55cf05e7b2e2f317bee6c558457665e0012237b9a20283843d8853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Antibodies, Monoclonal - metabolism</topic><topic>Antibodies, Monoclonal - pharmacology</topic><topic>Antibodies, Monoclonal, Humanized</topic><topic>Binding</topic><topic>Biology</topic><topic>Bioscience</topic><topic>Calcium</topic><topic>Cancer</topic><topic>Cell</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Cycle</topic><topic>Dose-Response Relationship, Drug</topic><topic>ErbB Receptors - antagonists &amp; inhibitors</topic><topic>ErbB Receptors - metabolism</topic><topic>Female</topic><topic>Fibronectins - chemistry</topic><topic>Humans</topic><topic>Immunoblotting</topic><topic>Kinetics</topic><topic>Landes</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Molecular Sequence Data</topic><topic>Organogenesis</topic><topic>Panitumumab</topic><topic>Peptide Fragments - metabolism</topic><topic>Peptide Fragments - pharmacology</topic><topic>Phosphorylation - drug effects</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Receptor, IGF Type 1 - antagonists &amp; inhibitors</topic><topic>Receptor, IGF Type 1 - metabolism</topic><topic>Signal Transduction - drug effects</topic><topic>Tumor Burden - drug effects</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emanuel, Stuart L.</creatorcontrib><creatorcontrib>Engle, Linda J.</creatorcontrib><creatorcontrib>Chao, Ginger</creatorcontrib><creatorcontrib>Zhu, Rong-Rong</creatorcontrib><creatorcontrib>Cao, Carolyn</creatorcontrib><creatorcontrib>Lin, Zheng</creatorcontrib><creatorcontrib>Yamniuk, Aaron P.</creatorcontrib><creatorcontrib>Hosbach, Jennifer</creatorcontrib><creatorcontrib>Brown, Jennifer</creatorcontrib><creatorcontrib>Fitzpatrick, Elizabeth</creatorcontrib><creatorcontrib>Gokemeijer, Jochem</creatorcontrib><creatorcontrib>Morin, Paul</creatorcontrib><creatorcontrib>Morse, Brent A.</creatorcontrib><creatorcontrib>Carvajal, Irvith M.</creatorcontrib><creatorcontrib>Fabrizio, David</creatorcontrib><creatorcontrib>Wright, Martin C.</creatorcontrib><creatorcontrib>Das Gupta, Ruchira</creatorcontrib><creatorcontrib>Gosselin, Michael</creatorcontrib><creatorcontrib>Cataldo, Daniel</creatorcontrib><creatorcontrib>Ryseck, Rolf P.</creatorcontrib><creatorcontrib>Doyle, Michael L.</creatorcontrib><creatorcontrib>Wong, Tai W.</creatorcontrib><creatorcontrib>Camphausen, Raymond T.</creatorcontrib><creatorcontrib>Cload, Sharon T.</creatorcontrib><creatorcontrib>Marsh, H. Nicholas</creatorcontrib><creatorcontrib>Gottardis, Marco M.</creatorcontrib><creatorcontrib>Furfine, Eric S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>mAbs</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emanuel, Stuart L.</au><au>Engle, Linda J.</au><au>Chao, Ginger</au><au>Zhu, Rong-Rong</au><au>Cao, Carolyn</au><au>Lin, Zheng</au><au>Yamniuk, Aaron P.</au><au>Hosbach, Jennifer</au><au>Brown, Jennifer</au><au>Fitzpatrick, Elizabeth</au><au>Gokemeijer, Jochem</au><au>Morin, Paul</au><au>Morse, Brent A.</au><au>Carvajal, Irvith M.</au><au>Fabrizio, David</au><au>Wright, Martin C.</au><au>Das Gupta, Ruchira</au><au>Gosselin, Michael</au><au>Cataldo, Daniel</au><au>Ryseck, Rolf P.</au><au>Doyle, Michael L.</au><au>Wong, Tai W.</au><au>Camphausen, Raymond T.</au><au>Cload, Sharon T.</au><au>Marsh, H. Nicholas</au><au>Gottardis, Marco M.</au><au>Furfine, Eric S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor</atitle><jtitle>mAbs</jtitle><addtitle>MAbs</addtitle><date>2011-01-01</date><risdate>2011</risdate><volume>3</volume><issue>1</issue><spage>38</spage><epage>48</epage><pages>38-48</pages><issn>1942-0862</issn><eissn>1942-0870</eissn><abstract>Engineered domains of human fibronectin (Adnectins™) were used to generate a bispecific Adnectin targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR), two transmembrane receptors that mediate proliferative and survival cell signaling in cancer. Single-domain Adnectins that specifically bind EGFR or IGF-IR were generated using mRNA display with a library containing as many as 10 13 Adnectin variants. mRNA display was also used to optimize lead Adnectin affinities, resulting in clones that inhibited EGFR phosphorylation at 7 to 38 nM compared to 2.6 μM for the parental clone. Individual, optimized, Adnectins specific for blocking either EGFR or IGF-IR signaling were engineered into a single protein (EI-Tandem Adnectin). The EI-Tandems inhibited phosphorylation of EGFR and IGF-IR, induced receptor degradation, and inhibited down-stream cell signaling and proliferation of human cancer cell lines (A431, H292, BxPC3 and RH41) with IC 50 values ranging from 0.1 to 113 nM. Although Adnectins bound to EGFR at a site distinct from those of anti-EGFR antibodies cetuximab, panitumumab and nimotuzumab, like the antibodies, the anti-EGFR Adnectins blocked the binding of EGF to EGFR. PEGylated EI-Tandem inhibited the growth of both EGFR and IGF-IR driven human tumor xenografts, induced degradation of EGFR, and reduced EGFR phosphorylation in tumors. These results demonstrate efficient engineering of bispecific Adnectins with high potency and desired specificity. The bispecificity may improve biological activity compared to monospecific biologics as tumor growth is driven by multiple growth factors. Our results illustrate a technological advancement for constructing multi-specific biologics in cancer therapy.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>21099371</pmid><doi>10.4161/mabs.3.1.14168</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1942-0862
ispartof mAbs, 2011-01, Vol.3 (1), p.38-48
issn 1942-0862
1942-0870
language eng
recordid cdi_landesbioscience_primary_mabs_article_14168
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Amino Acid Sequence
Animals
Antibodies, Monoclonal - metabolism
Antibodies, Monoclonal - pharmacology
Antibodies, Monoclonal, Humanized
Binding
Biology
Bioscience
Calcium
Cancer
Cell
Cell Line, Tumor
Cell Proliferation - drug effects
Cycle
Dose-Response Relationship, Drug
ErbB Receptors - antagonists & inhibitors
ErbB Receptors - metabolism
Female
Fibronectins - chemistry
Humans
Immunoblotting
Kinetics
Landes
Mice
Mice, Nude
Molecular Sequence Data
Organogenesis
Panitumumab
Peptide Fragments - metabolism
Peptide Fragments - pharmacology
Phosphorylation - drug effects
Protein Binding
Proteins
Receptor, IGF Type 1 - antagonists & inhibitors
Receptor, IGF Type 1 - metabolism
Signal Transduction - drug effects
Tumor Burden - drug effects
Xenograft Model Antitumor Assays
title A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T10%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_lande&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fibronectin%20scaffold%20approach%20to%20bispecific%20inhibitors%20of%20epidermal%20growth%20factor%20receptor%20and%20insulin-like%20growth%20factor-I%20receptor&rft.jtitle=mAbs&rft.au=Emanuel,%20Stuart%20L.&rft.date=2011-01-01&rft.volume=3&rft.issue=1&rft.spage=38&rft.epage=48&rft.pages=38-48&rft.issn=1942-0862&rft.eissn=1942-0870&rft_id=info:doi/10.4161/mabs.3.1.14168&rft_dat=%3Cpubmed_lande%3E21099371%3C/pubmed_lande%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/21099371&rfr_iscdi=true