Micromechanical modeling of transverse cracking with different methods for generating random fiber distributions

This study presents a modeling investigation into the initiation and propagation of transverse cracking in unidirectional fiber-reinforced composites, focusing on factors like fiber arrangement and matrix properties. Microscale computational models are created to address those challenges. Since exis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mehdikhani, Mahoor, Guo, Rui, Breite, Christian, AhmadvashAghbash, Sina, Celentano, Diego, Swolfs, Yentl
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1468
container_issue
container_start_page 1461
container_title
container_volume 3
creator Mehdikhani, Mahoor
Guo, Rui
Breite, Christian
AhmadvashAghbash, Sina
Celentano, Diego
Swolfs, Yentl
description This study presents a modeling investigation into the initiation and propagation of transverse cracking in unidirectional fiber-reinforced composites, focusing on factors like fiber arrangement and matrix properties. Microscale computational models are created to address those challenges. Since existing fiber distribution generators are criticized for not representing features like resin-rich pockets, a deep learning approach is utilized to produce realistic microstructures for finite element modeling. A constitutive material model, incorporating epoxy plasticity and damage, successfully predicts the transverse crack formation and propagation under periodic boundary conditions. The study evaluates the impact of fiber arrangement on cracking behavior using microstructures generated by different methods, revealing similarities and differences in predicted outcomes. This research offers insights into enhancing the accuracy of computational models for simulating transverse cracking in composites.
format Conference Proceeding
fullrecord <record><control><sourceid>kuleuven_FZOIL</sourceid><recordid>TN_cdi_kuleuven_dspace_20_500_12942_752296</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20_500_12942_752296</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_20_500_12942_7522963</originalsourceid><addsrcrecordid>eNqVjsEKwjAQRAPiQdR_2LOg1GjVnEXx4s17iMmmDbaJbLbq51vBD9DTwPDeMAMxVdudVEupdmWxVCNxPwdLqUVbmxisaaBNDpsQK0gemEzMD6SMYMnY26d-Bq7BBe-RMDK0yHVyGXwiqDAiGf5QvehSCz5ckXo6M4VrxyHFPBFDb5qM02-Oxex4uOxP81vXYPfAqF2-G4taFrosCt1fXUu9LaVUm9VYLH6GNb949df6G7NaWy8</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Micromechanical modeling of transverse cracking with different methods for generating random fiber distributions</title><source>Lirias (KU Leuven Association)</source><creator>Mehdikhani, Mahoor ; Guo, Rui ; Breite, Christian ; AhmadvashAghbash, Sina ; Celentano, Diego ; Swolfs, Yentl</creator><creatorcontrib>Mehdikhani, Mahoor ; Guo, Rui ; Breite, Christian ; AhmadvashAghbash, Sina ; Celentano, Diego ; Swolfs, Yentl</creatorcontrib><description>This study presents a modeling investigation into the initiation and propagation of transverse cracking in unidirectional fiber-reinforced composites, focusing on factors like fiber arrangement and matrix properties. Microscale computational models are created to address those challenges. Since existing fiber distribution generators are criticized for not representing features like resin-rich pockets, a deep learning approach is utilized to produce realistic microstructures for finite element modeling. A constitutive material model, incorporating epoxy plasticity and damage, successfully predicts the transverse crack formation and propagation under periodic boundary conditions. The study evaluates the impact of fiber arrangement on cracking behavior using microstructures generated by different methods, revealing similarities and differences in predicted outcomes. This research offers insights into enhancing the accuracy of computational models for simulating transverse cracking in composites.</description><identifier>ISBN: 9782912985019</identifier><identifier>ISBN: 2912985013</identifier><language>eng</language><ispartof>Proceedings of the 21st European Conference on Composite Materials, 2024, Vol.3, p.1461-1468</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,315,776,27839</link.rule.ids><linktorsrc>$$Uhttps://lirias.kuleuven.be/handle/20.500.12942/752296$$EView_record_in_KU_Leuven_Association$$FView_record_in_$$GKU_Leuven_Association$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Mehdikhani, Mahoor</creatorcontrib><creatorcontrib>Guo, Rui</creatorcontrib><creatorcontrib>Breite, Christian</creatorcontrib><creatorcontrib>AhmadvashAghbash, Sina</creatorcontrib><creatorcontrib>Celentano, Diego</creatorcontrib><creatorcontrib>Swolfs, Yentl</creatorcontrib><title>Micromechanical modeling of transverse cracking with different methods for generating random fiber distributions</title><title>Proceedings of the 21st European Conference on Composite Materials</title><description>This study presents a modeling investigation into the initiation and propagation of transverse cracking in unidirectional fiber-reinforced composites, focusing on factors like fiber arrangement and matrix properties. Microscale computational models are created to address those challenges. Since existing fiber distribution generators are criticized for not representing features like resin-rich pockets, a deep learning approach is utilized to produce realistic microstructures for finite element modeling. A constitutive material model, incorporating epoxy plasticity and damage, successfully predicts the transverse crack formation and propagation under periodic boundary conditions. The study evaluates the impact of fiber arrangement on cracking behavior using microstructures generated by different methods, revealing similarities and differences in predicted outcomes. This research offers insights into enhancing the accuracy of computational models for simulating transverse cracking in composites.</description><isbn>9782912985019</isbn><isbn>2912985013</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2024</creationdate><recordtype>conference_proceeding</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVjsEKwjAQRAPiQdR_2LOg1GjVnEXx4s17iMmmDbaJbLbq51vBD9DTwPDeMAMxVdudVEupdmWxVCNxPwdLqUVbmxisaaBNDpsQK0gemEzMD6SMYMnY26d-Bq7BBe-RMDK0yHVyGXwiqDAiGf5QvehSCz5ckXo6M4VrxyHFPBFDb5qM02-Oxex4uOxP81vXYPfAqF2-G4taFrosCt1fXUu9LaVUm9VYLH6GNb949df6G7NaWy8</recordid><startdate>20240707</startdate><enddate>20240707</enddate><creator>Mehdikhani, Mahoor</creator><creator>Guo, Rui</creator><creator>Breite, Christian</creator><creator>AhmadvashAghbash, Sina</creator><creator>Celentano, Diego</creator><creator>Swolfs, Yentl</creator><scope>FZOIL</scope></search><sort><creationdate>20240707</creationdate><title>Micromechanical modeling of transverse cracking with different methods for generating random fiber distributions</title><author>Mehdikhani, Mahoor ; Guo, Rui ; Breite, Christian ; AhmadvashAghbash, Sina ; Celentano, Diego ; Swolfs, Yentl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_20_500_12942_7522963</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Mehdikhani, Mahoor</creatorcontrib><creatorcontrib>Guo, Rui</creatorcontrib><creatorcontrib>Breite, Christian</creatorcontrib><creatorcontrib>AhmadvashAghbash, Sina</creatorcontrib><creatorcontrib>Celentano, Diego</creatorcontrib><creatorcontrib>Swolfs, Yentl</creatorcontrib><collection>Lirias (KU Leuven Association)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mehdikhani, Mahoor</au><au>Guo, Rui</au><au>Breite, Christian</au><au>AhmadvashAghbash, Sina</au><au>Celentano, Diego</au><au>Swolfs, Yentl</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Micromechanical modeling of transverse cracking with different methods for generating random fiber distributions</atitle><btitle>Proceedings of the 21st European Conference on Composite Materials</btitle><date>2024-07-07</date><risdate>2024</risdate><volume>3</volume><spage>1461</spage><epage>1468</epage><pages>1461-1468</pages><isbn>9782912985019</isbn><isbn>2912985013</isbn><abstract>This study presents a modeling investigation into the initiation and propagation of transverse cracking in unidirectional fiber-reinforced composites, focusing on factors like fiber arrangement and matrix properties. Microscale computational models are created to address those challenges. Since existing fiber distribution generators are criticized for not representing features like resin-rich pockets, a deep learning approach is utilized to produce realistic microstructures for finite element modeling. A constitutive material model, incorporating epoxy plasticity and damage, successfully predicts the transverse crack formation and propagation under periodic boundary conditions. The study evaluates the impact of fiber arrangement on cracking behavior using microstructures generated by different methods, revealing similarities and differences in predicted outcomes. This research offers insights into enhancing the accuracy of computational models for simulating transverse cracking in composites.</abstract><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9782912985019
ispartof Proceedings of the 21st European Conference on Composite Materials, 2024, Vol.3, p.1461-1468
issn
language eng
recordid cdi_kuleuven_dspace_20_500_12942_752296
source Lirias (KU Leuven Association)
title Micromechanical modeling of transverse cracking with different methods for generating random fiber distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T09%3A23%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven_FZOIL&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Micromechanical%20modeling%20of%20transverse%20cracking%20with%20different%20methods%20for%20generating%20random%20fiber%20distributions&rft.btitle=Proceedings%20of%20the%2021st%20European%20Conference%20on%20Composite%20Materials&rft.au=Mehdikhani,%20Mahoor&rft.date=2024-07-07&rft.volume=3&rft.spage=1461&rft.epage=1468&rft.pages=1461-1468&rft.isbn=9782912985019&rft.isbn_list=2912985013&rft_id=info:doi/&rft_dat=%3Ckuleuven_FZOIL%3E20_500_12942_752296%3C/kuleuven_FZOIL%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true