The covariance environment defines cellular niches for spatial inference
A key challenge of analyzing data from high-resolution spatial profiling technologies is to suitably represent the features of cellular neighborhoods or niches. Here we introduce the covariance environment (COVET), a representation that leverages the gene-gene covariate structure across cells in the...
Gespeichert in:
Veröffentlicht in: | NATURE BIOTECHNOLOGY 2024-04 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | NATURE BIOTECHNOLOGY |
container_volume | |
creator | Haviv, Doron Remsik, Jan Gatie, Mohamed Snopkowski, Catherine Takizawa, Meril Pereira, Nathan Bashkin, John Jovanovich, Stevan Nawy, Tal Chaligne, Ronan Boire, Adrienne Hadjantonakis, Anna-Katerina Pe'er, Dana |
description | A key challenge of analyzing data from high-resolution spatial profiling technologies is to suitably represent the features of cellular neighborhoods or niches. Here we introduce the covariance environment (COVET), a representation that leverages the gene-gene covariate structure across cells in the niche to capture the multivariate nature of cellular interactions within it. We define a principled optimal transport-based distance metric between COVET niches that scales to millions of cells. Using COVET to encode spatial context, we developed environmental variational inference (ENVI), a conditional variational autoencoder that jointly embeds spatial and single-cell RNA sequencing data into a latent space. ENVI includes two decoders: one to impute gene expression across the spatial modality and a second to project spatial information onto single-cell data. ENVI can confer spatial context to genomics data from single dissociated cells and outperforms alternatives for imputing gene expression on diverse spatial datasets. |
format | Article |
fullrecord | <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_20_500_12942_746544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20_500_12942_746544</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_20_500_12942_7465443</originalsourceid><addsrcrecordid>eNqVjEEOgjAQRbvQRETv0LUJZoBSdG00HIB905RpqNbBtEA8viw8gK5-XvLeX7Ekh1OdQV7JDdvGeAcAKaRMWNP2yM0w6-A0GeRIswsDPZFG3qF1hJEb9H7yOnBypl_YDoHHlx6d9tyRxYBLuWNrq33E_XdTdrhd20uTPSaP04ykuqUxqApQFYDKi7MoVC1kJUSZsuPPshrfY_nX-wfQk009</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The covariance environment defines cellular niches for spatial inference</title><source>Lirias (KU Leuven Association)</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Haviv, Doron ; Remsik, Jan ; Gatie, Mohamed ; Snopkowski, Catherine ; Takizawa, Meril ; Pereira, Nathan ; Bashkin, John ; Jovanovich, Stevan ; Nawy, Tal ; Chaligne, Ronan ; Boire, Adrienne ; Hadjantonakis, Anna-Katerina ; Pe'er, Dana</creator><creatorcontrib>Haviv, Doron ; Remsik, Jan ; Gatie, Mohamed ; Snopkowski, Catherine ; Takizawa, Meril ; Pereira, Nathan ; Bashkin, John ; Jovanovich, Stevan ; Nawy, Tal ; Chaligne, Ronan ; Boire, Adrienne ; Hadjantonakis, Anna-Katerina ; Pe'er, Dana</creatorcontrib><description>A key challenge of analyzing data from high-resolution spatial profiling technologies is to suitably represent the features of cellular neighborhoods or niches. Here we introduce the covariance environment (COVET), a representation that leverages the gene-gene covariate structure across cells in the niche to capture the multivariate nature of cellular interactions within it. We define a principled optimal transport-based distance metric between COVET niches that scales to millions of cells. Using COVET to encode spatial context, we developed environmental variational inference (ENVI), a conditional variational autoencoder that jointly embeds spatial and single-cell RNA sequencing data into a latent space. ENVI includes two decoders: one to impute gene expression across the spatial modality and a second to project spatial information onto single-cell data. ENVI can confer spatial context to genomics data from single dissociated cells and outperforms alternatives for imputing gene expression on diverse spatial datasets.</description><identifier>ISSN: 1087-0156</identifier><language>eng</language><publisher>NATURE PORTFOLIO</publisher><ispartof>NATURE BIOTECHNOLOGY, 2024-04</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,27860</link.rule.ids></links><search><creatorcontrib>Haviv, Doron</creatorcontrib><creatorcontrib>Remsik, Jan</creatorcontrib><creatorcontrib>Gatie, Mohamed</creatorcontrib><creatorcontrib>Snopkowski, Catherine</creatorcontrib><creatorcontrib>Takizawa, Meril</creatorcontrib><creatorcontrib>Pereira, Nathan</creatorcontrib><creatorcontrib>Bashkin, John</creatorcontrib><creatorcontrib>Jovanovich, Stevan</creatorcontrib><creatorcontrib>Nawy, Tal</creatorcontrib><creatorcontrib>Chaligne, Ronan</creatorcontrib><creatorcontrib>Boire, Adrienne</creatorcontrib><creatorcontrib>Hadjantonakis, Anna-Katerina</creatorcontrib><creatorcontrib>Pe'er, Dana</creatorcontrib><title>The covariance environment defines cellular niches for spatial inference</title><title>NATURE BIOTECHNOLOGY</title><description>A key challenge of analyzing data from high-resolution spatial profiling technologies is to suitably represent the features of cellular neighborhoods or niches. Here we introduce the covariance environment (COVET), a representation that leverages the gene-gene covariate structure across cells in the niche to capture the multivariate nature of cellular interactions within it. We define a principled optimal transport-based distance metric between COVET niches that scales to millions of cells. Using COVET to encode spatial context, we developed environmental variational inference (ENVI), a conditional variational autoencoder that jointly embeds spatial and single-cell RNA sequencing data into a latent space. ENVI includes two decoders: one to impute gene expression across the spatial modality and a second to project spatial information onto single-cell data. ENVI can confer spatial context to genomics data from single dissociated cells and outperforms alternatives for imputing gene expression on diverse spatial datasets.</description><issn>1087-0156</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVjEEOgjAQRbvQRETv0LUJZoBSdG00HIB905RpqNbBtEA8viw8gK5-XvLeX7Ekh1OdQV7JDdvGeAcAKaRMWNP2yM0w6-A0GeRIswsDPZFG3qF1hJEb9H7yOnBypl_YDoHHlx6d9tyRxYBLuWNrq33E_XdTdrhd20uTPSaP04ykuqUxqApQFYDKi7MoVC1kJUSZsuPPshrfY_nX-wfQk009</recordid><startdate>20240402</startdate><enddate>20240402</enddate><creator>Haviv, Doron</creator><creator>Remsik, Jan</creator><creator>Gatie, Mohamed</creator><creator>Snopkowski, Catherine</creator><creator>Takizawa, Meril</creator><creator>Pereira, Nathan</creator><creator>Bashkin, John</creator><creator>Jovanovich, Stevan</creator><creator>Nawy, Tal</creator><creator>Chaligne, Ronan</creator><creator>Boire, Adrienne</creator><creator>Hadjantonakis, Anna-Katerina</creator><creator>Pe'er, Dana</creator><general>NATURE PORTFOLIO</general><scope>FZOIL</scope></search><sort><creationdate>20240402</creationdate><title>The covariance environment defines cellular niches for spatial inference</title><author>Haviv, Doron ; Remsik, Jan ; Gatie, Mohamed ; Snopkowski, Catherine ; Takizawa, Meril ; Pereira, Nathan ; Bashkin, John ; Jovanovich, Stevan ; Nawy, Tal ; Chaligne, Ronan ; Boire, Adrienne ; Hadjantonakis, Anna-Katerina ; Pe'er, Dana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_20_500_12942_7465443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haviv, Doron</creatorcontrib><creatorcontrib>Remsik, Jan</creatorcontrib><creatorcontrib>Gatie, Mohamed</creatorcontrib><creatorcontrib>Snopkowski, Catherine</creatorcontrib><creatorcontrib>Takizawa, Meril</creatorcontrib><creatorcontrib>Pereira, Nathan</creatorcontrib><creatorcontrib>Bashkin, John</creatorcontrib><creatorcontrib>Jovanovich, Stevan</creatorcontrib><creatorcontrib>Nawy, Tal</creatorcontrib><creatorcontrib>Chaligne, Ronan</creatorcontrib><creatorcontrib>Boire, Adrienne</creatorcontrib><creatorcontrib>Hadjantonakis, Anna-Katerina</creatorcontrib><creatorcontrib>Pe'er, Dana</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>NATURE BIOTECHNOLOGY</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haviv, Doron</au><au>Remsik, Jan</au><au>Gatie, Mohamed</au><au>Snopkowski, Catherine</au><au>Takizawa, Meril</au><au>Pereira, Nathan</au><au>Bashkin, John</au><au>Jovanovich, Stevan</au><au>Nawy, Tal</au><au>Chaligne, Ronan</au><au>Boire, Adrienne</au><au>Hadjantonakis, Anna-Katerina</au><au>Pe'er, Dana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The covariance environment defines cellular niches for spatial inference</atitle><jtitle>NATURE BIOTECHNOLOGY</jtitle><date>2024-04-02</date><risdate>2024</risdate><issn>1087-0156</issn><abstract>A key challenge of analyzing data from high-resolution spatial profiling technologies is to suitably represent the features of cellular neighborhoods or niches. Here we introduce the covariance environment (COVET), a representation that leverages the gene-gene covariate structure across cells in the niche to capture the multivariate nature of cellular interactions within it. We define a principled optimal transport-based distance metric between COVET niches that scales to millions of cells. Using COVET to encode spatial context, we developed environmental variational inference (ENVI), a conditional variational autoencoder that jointly embeds spatial and single-cell RNA sequencing data into a latent space. ENVI includes two decoders: one to impute gene expression across the spatial modality and a second to project spatial information onto single-cell data. ENVI can confer spatial context to genomics data from single dissociated cells and outperforms alternatives for imputing gene expression on diverse spatial datasets.</abstract><pub>NATURE PORTFOLIO</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1087-0156 |
ispartof | NATURE BIOTECHNOLOGY, 2024-04 |
issn | 1087-0156 |
language | eng |
recordid | cdi_kuleuven_dspace_20_500_12942_746544 |
source | Lirias (KU Leuven Association); Nature; SpringerLink Journals - AutoHoldings |
title | The covariance environment defines cellular niches for spatial inference |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A21%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20covariance%20environment%20defines%20cellular%20niches%20for%20spatial%20inference&rft.jtitle=NATURE%20BIOTECHNOLOGY&rft.au=Haviv,%20Doron&rft.date=2024-04-02&rft.issn=1087-0156&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E20_500_12942_746544%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |