Genetic architecture and genomic predictive ability of apple quantitative traits across environments

Implementation of genomic tools is desirable to increase the efficiency of apple breeding. Recently, the multi-environment apple reference population (apple REFPOP) proved useful for rediscovering loci, estimating genomic predictive ability, and studying genotype by environment interactions (G × E)....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:HORTICULTURE RESEARCH 2022-01, Vol.9
Hauptverfasser: Jung, Michaela, Keller, Beat, Roth, Morgane, Aranzana, Maria Jose, Auwerkerken, Annemarie, Guerra, Walter, Al-Rifai, Mehdi, Lewandowski, Mariusz, Sanin, Nadia, Rymenants, Marijn, Didelot, Frederique, Dujak, Christian, Font i Forcada, Carolina, Knauf, Andrea, Laurens, Francois, Studer, Bruno, Muranty, Helene, Patocchi, Andrea
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title HORTICULTURE RESEARCH
container_volume 9
creator Jung, Michaela
Keller, Beat
Roth, Morgane
Aranzana, Maria Jose
Auwerkerken, Annemarie
Guerra, Walter
Al-Rifai, Mehdi
Lewandowski, Mariusz
Sanin, Nadia
Rymenants, Marijn
Didelot, Frederique
Dujak, Christian
Font i Forcada, Carolina
Knauf, Andrea
Laurens, Francois
Studer, Bruno
Muranty, Helene
Patocchi, Andrea
description Implementation of genomic tools is desirable to increase the efficiency of apple breeding. Recently, the multi-environment apple reference population (apple REFPOP) proved useful for rediscovering loci, estimating genomic predictive ability, and studying genotype by environment interactions (G × E). So far, only two phenological traits were investigated using the apple REFPOP, although the population may be valuable when dissecting genetic architecture and reporting predictive abilities for additional key traits in apple breeding. Here we show contrasting genetic architecture and genomic predictive abilities for 30 quantitative traits across up to six European locations using the apple REFPOP. A total of 59 stable and 277 location-specific associations were found using GWAS, 69.2% of which are novel when compared with 41 reviewed publications. Average genomic predictive abilities of 0.18-0.88 were estimated using main-effect univariate, main-effect multivariate, multi-environment univariate, and multi-environment multivariate models. The G × E accounted for up to 24% of the phenotypic variability. This most comprehensive genomic study in apple in terms of trait-environment combinations provided knowledge of trait biology and prediction models that can be readily applied for marker-assisted or genomic selection, thus facilitating increased breeding efficiency.
format Article
fullrecord <record><control><sourceid>kuleuven_FZOIL</sourceid><recordid>TN_cdi_kuleuven_dspace_20_500_12942_743172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20_500_12942_743172</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_20_500_12942_7431723</originalsourceid><addsrcrecordid>eNqViksOgjAUALvQRKLeoWsTTCkIuDZ-DuC-eZaHvogF2wfR22uMB9DVJDMzEpHOcx3nZaImYh4CnVRWpjorCx2Jao8OmawEby_EaLn3KMFV8oyuvb1D57EiyzS89Yka4qdsawld16C89-CYGD6VPRAHCda3IUh0A_nW3dBxmIlxDU3A-ZdTsdhtj5tDfO0b7Ad0pgodWDRamZVSJtHrTJsiS5NCp3_Oy59nww9OX5rAWUE</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Genetic architecture and genomic predictive ability of apple quantitative traits across environments</title><source>Lirias (KU Leuven Association)</source><creator>Jung, Michaela ; Keller, Beat ; Roth, Morgane ; Aranzana, Maria Jose ; Auwerkerken, Annemarie ; Guerra, Walter ; Al-Rifai, Mehdi ; Lewandowski, Mariusz ; Sanin, Nadia ; Rymenants, Marijn ; Didelot, Frederique ; Dujak, Christian ; Font i Forcada, Carolina ; Knauf, Andrea ; Laurens, Francois ; Studer, Bruno ; Muranty, Helene ; Patocchi, Andrea</creator><creatorcontrib>Jung, Michaela ; Keller, Beat ; Roth, Morgane ; Aranzana, Maria Jose ; Auwerkerken, Annemarie ; Guerra, Walter ; Al-Rifai, Mehdi ; Lewandowski, Mariusz ; Sanin, Nadia ; Rymenants, Marijn ; Didelot, Frederique ; Dujak, Christian ; Font i Forcada, Carolina ; Knauf, Andrea ; Laurens, Francois ; Studer, Bruno ; Muranty, Helene ; Patocchi, Andrea</creatorcontrib><description>Implementation of genomic tools is desirable to increase the efficiency of apple breeding. Recently, the multi-environment apple reference population (apple REFPOP) proved useful for rediscovering loci, estimating genomic predictive ability, and studying genotype by environment interactions (G × E). So far, only two phenological traits were investigated using the apple REFPOP, although the population may be valuable when dissecting genetic architecture and reporting predictive abilities for additional key traits in apple breeding. Here we show contrasting genetic architecture and genomic predictive abilities for 30 quantitative traits across up to six European locations using the apple REFPOP. A total of 59 stable and 277 location-specific associations were found using GWAS, 69.2% of which are novel when compared with 41 reviewed publications. Average genomic predictive abilities of 0.18-0.88 were estimated using main-effect univariate, main-effect multivariate, multi-environment univariate, and multi-environment multivariate models. The G × E accounted for up to 24% of the phenotypic variability. This most comprehensive genomic study in apple in terms of trait-environment combinations provided knowledge of trait biology and prediction models that can be readily applied for marker-assisted or genomic selection, thus facilitating increased breeding efficiency.</description><identifier>ISSN: 2662-6810</identifier><language>eng</language><publisher>OXFORD UNIV PRESS INC</publisher><ispartof>HORTICULTURE RESEARCH, 2022-01, Vol.9</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,776,27837</link.rule.ids><linktorsrc>$$Uhttps://lirias.kuleuven.be/handle/20.500.12942/743172$$EView_record_in_KU_Leuven_Association$$FView_record_in_$$GKU_Leuven_Association$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Jung, Michaela</creatorcontrib><creatorcontrib>Keller, Beat</creatorcontrib><creatorcontrib>Roth, Morgane</creatorcontrib><creatorcontrib>Aranzana, Maria Jose</creatorcontrib><creatorcontrib>Auwerkerken, Annemarie</creatorcontrib><creatorcontrib>Guerra, Walter</creatorcontrib><creatorcontrib>Al-Rifai, Mehdi</creatorcontrib><creatorcontrib>Lewandowski, Mariusz</creatorcontrib><creatorcontrib>Sanin, Nadia</creatorcontrib><creatorcontrib>Rymenants, Marijn</creatorcontrib><creatorcontrib>Didelot, Frederique</creatorcontrib><creatorcontrib>Dujak, Christian</creatorcontrib><creatorcontrib>Font i Forcada, Carolina</creatorcontrib><creatorcontrib>Knauf, Andrea</creatorcontrib><creatorcontrib>Laurens, Francois</creatorcontrib><creatorcontrib>Studer, Bruno</creatorcontrib><creatorcontrib>Muranty, Helene</creatorcontrib><creatorcontrib>Patocchi, Andrea</creatorcontrib><title>Genetic architecture and genomic predictive ability of apple quantitative traits across environments</title><title>HORTICULTURE RESEARCH</title><description>Implementation of genomic tools is desirable to increase the efficiency of apple breeding. Recently, the multi-environment apple reference population (apple REFPOP) proved useful for rediscovering loci, estimating genomic predictive ability, and studying genotype by environment interactions (G × E). So far, only two phenological traits were investigated using the apple REFPOP, although the population may be valuable when dissecting genetic architecture and reporting predictive abilities for additional key traits in apple breeding. Here we show contrasting genetic architecture and genomic predictive abilities for 30 quantitative traits across up to six European locations using the apple REFPOP. A total of 59 stable and 277 location-specific associations were found using GWAS, 69.2% of which are novel when compared with 41 reviewed publications. Average genomic predictive abilities of 0.18-0.88 were estimated using main-effect univariate, main-effect multivariate, multi-environment univariate, and multi-environment multivariate models. The G × E accounted for up to 24% of the phenotypic variability. This most comprehensive genomic study in apple in terms of trait-environment combinations provided knowledge of trait biology and prediction models that can be readily applied for marker-assisted or genomic selection, thus facilitating increased breeding efficiency.</description><issn>2662-6810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqViksOgjAUALvQRKLeoWsTTCkIuDZ-DuC-eZaHvogF2wfR22uMB9DVJDMzEpHOcx3nZaImYh4CnVRWpjorCx2Jao8OmawEby_EaLn3KMFV8oyuvb1D57EiyzS89Yka4qdsawld16C89-CYGD6VPRAHCda3IUh0A_nW3dBxmIlxDU3A-ZdTsdhtj5tDfO0b7Ad0pgodWDRamZVSJtHrTJsiS5NCp3_Oy59nww9OX5rAWUE</recordid><startdate>20220105</startdate><enddate>20220105</enddate><creator>Jung, Michaela</creator><creator>Keller, Beat</creator><creator>Roth, Morgane</creator><creator>Aranzana, Maria Jose</creator><creator>Auwerkerken, Annemarie</creator><creator>Guerra, Walter</creator><creator>Al-Rifai, Mehdi</creator><creator>Lewandowski, Mariusz</creator><creator>Sanin, Nadia</creator><creator>Rymenants, Marijn</creator><creator>Didelot, Frederique</creator><creator>Dujak, Christian</creator><creator>Font i Forcada, Carolina</creator><creator>Knauf, Andrea</creator><creator>Laurens, Francois</creator><creator>Studer, Bruno</creator><creator>Muranty, Helene</creator><creator>Patocchi, Andrea</creator><general>OXFORD UNIV PRESS INC</general><scope>FZOIL</scope></search><sort><creationdate>20220105</creationdate><title>Genetic architecture and genomic predictive ability of apple quantitative traits across environments</title><author>Jung, Michaela ; Keller, Beat ; Roth, Morgane ; Aranzana, Maria Jose ; Auwerkerken, Annemarie ; Guerra, Walter ; Al-Rifai, Mehdi ; Lewandowski, Mariusz ; Sanin, Nadia ; Rymenants, Marijn ; Didelot, Frederique ; Dujak, Christian ; Font i Forcada, Carolina ; Knauf, Andrea ; Laurens, Francois ; Studer, Bruno ; Muranty, Helene ; Patocchi, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_20_500_12942_7431723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Michaela</creatorcontrib><creatorcontrib>Keller, Beat</creatorcontrib><creatorcontrib>Roth, Morgane</creatorcontrib><creatorcontrib>Aranzana, Maria Jose</creatorcontrib><creatorcontrib>Auwerkerken, Annemarie</creatorcontrib><creatorcontrib>Guerra, Walter</creatorcontrib><creatorcontrib>Al-Rifai, Mehdi</creatorcontrib><creatorcontrib>Lewandowski, Mariusz</creatorcontrib><creatorcontrib>Sanin, Nadia</creatorcontrib><creatorcontrib>Rymenants, Marijn</creatorcontrib><creatorcontrib>Didelot, Frederique</creatorcontrib><creatorcontrib>Dujak, Christian</creatorcontrib><creatorcontrib>Font i Forcada, Carolina</creatorcontrib><creatorcontrib>Knauf, Andrea</creatorcontrib><creatorcontrib>Laurens, Francois</creatorcontrib><creatorcontrib>Studer, Bruno</creatorcontrib><creatorcontrib>Muranty, Helene</creatorcontrib><creatorcontrib>Patocchi, Andrea</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>HORTICULTURE RESEARCH</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jung, Michaela</au><au>Keller, Beat</au><au>Roth, Morgane</au><au>Aranzana, Maria Jose</au><au>Auwerkerken, Annemarie</au><au>Guerra, Walter</au><au>Al-Rifai, Mehdi</au><au>Lewandowski, Mariusz</au><au>Sanin, Nadia</au><au>Rymenants, Marijn</au><au>Didelot, Frederique</au><au>Dujak, Christian</au><au>Font i Forcada, Carolina</au><au>Knauf, Andrea</au><au>Laurens, Francois</au><au>Studer, Bruno</au><au>Muranty, Helene</au><au>Patocchi, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic architecture and genomic predictive ability of apple quantitative traits across environments</atitle><jtitle>HORTICULTURE RESEARCH</jtitle><date>2022-01-05</date><risdate>2022</risdate><volume>9</volume><issn>2662-6810</issn><abstract>Implementation of genomic tools is desirable to increase the efficiency of apple breeding. Recently, the multi-environment apple reference population (apple REFPOP) proved useful for rediscovering loci, estimating genomic predictive ability, and studying genotype by environment interactions (G × E). So far, only two phenological traits were investigated using the apple REFPOP, although the population may be valuable when dissecting genetic architecture and reporting predictive abilities for additional key traits in apple breeding. Here we show contrasting genetic architecture and genomic predictive abilities for 30 quantitative traits across up to six European locations using the apple REFPOP. A total of 59 stable and 277 location-specific associations were found using GWAS, 69.2% of which are novel when compared with 41 reviewed publications. Average genomic predictive abilities of 0.18-0.88 were estimated using main-effect univariate, main-effect multivariate, multi-environment univariate, and multi-environment multivariate models. The G × E accounted for up to 24% of the phenotypic variability. This most comprehensive genomic study in apple in terms of trait-environment combinations provided knowledge of trait biology and prediction models that can be readily applied for marker-assisted or genomic selection, thus facilitating increased breeding efficiency.</abstract><pub>OXFORD UNIV PRESS INC</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2662-6810
ispartof HORTICULTURE RESEARCH, 2022-01, Vol.9
issn 2662-6810
language eng
recordid cdi_kuleuven_dspace_20_500_12942_743172
source Lirias (KU Leuven Association)
title Genetic architecture and genomic predictive ability of apple quantitative traits across environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven_FZOIL&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20architecture%20and%20genomic%20predictive%20ability%20of%20apple%20quantitative%20traits%20across%20environments&rft.jtitle=HORTICULTURE%20RESEARCH&rft.au=Jung,%20Michaela&rft.date=2022-01-05&rft.volume=9&rft.issn=2662-6810&rft_id=info:doi/&rft_dat=%3Ckuleuven_FZOIL%3E20_500_12942_743172%3C/kuleuven_FZOIL%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true