QUANTIFYING UNCERTAINTY OF PHYSICS-INFORMED NEURAL NETWORKS FOR CONTINUUM MECHANICS APPLICATIONS

Physics-informed neural networks (PINNs) are a relatively new technique that has gained significant attention in recent years as a versatile and robust way to solve a wide range of physical problems, including continuum mechanics. One of the main advantages of using PINNs is that they can directly i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bonnet-Eymard, Damien, Persoons, Augustin, Faes, Matthias G.R, Moens, David
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!