ConfSolv: Prediction of Solute Conformer-Free Energies across a Range of Solvents
Predicting Gibbs free energy of solution is key to understanding the solvent effects on thermodynamics and reaction rates for kinetic modeling. Accurately computing solution free energies requires the enumeration and evaluation of relevant solute conformers in solution. However, even after generatio...
Gespeichert in:
Veröffentlicht in: | Journal Of Physical Chemistry B 2023-11, Vol.127 (47), p.10151-10170 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10170 |
---|---|
container_issue | 47 |
container_start_page | 10151 |
container_title | Journal Of Physical Chemistry B |
container_volume | 127 |
creator | Pattanaik, Lagnajit Menon, Angiras Settels, Volker Spiekermann, Kevin A Tan, Zipei Vermeire, Florence H Sandfort, Frederik Eiden, Philipp Green, William H |
description | Predicting Gibbs free energy of solution is key to understanding the solvent effects on thermodynamics and reaction rates for kinetic modeling. Accurately computing solution free energies requires the enumeration and evaluation of relevant solute conformers in solution. However, even after generation of relevant conformers, determining their free energy of solution requires an expensive workflow consisting of several ab initio computational chemistry calculations. To help address this challenge, we generate a large data set of solution free energies for nearly 44,000 solutes with almost 9 million conformers calculated in 41 different solvents using density functional theory and COSMO-RS and quantify the impact of solute conformers on the solution free energy. We then train a message passing neural network to predict the relative solution free energies of a set of solute conformers, enabling the identification of a small subset of thermodynamically relevant conformers. The model offers substantial computational time savings with predictions usually substantially within 1 kcal/mol of the free energy of the solution calculated by using computational chemical methods. |
format | Article |
fullrecord | <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_20_500_12942_732229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20_500_12942_732229</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_20_500_12942_7322293</originalsourceid><addsrcrecordid>eNqVi8sOgjAQRbvQRHz8w6xNMGUQFLcE4tLXvmlgICi2pi3EzxcTPkBXJzn33Anzggi5Hwc8nrG5tXfOMcJ97LFzqlV11W1_gJOhsilcoxXoCgbXOYLvrM2TjJ8bIsgUmbohC7Iw2g6Ai1Q1jYeelLNLNq1ka2k1csHWeXZLj_6ja6kbElHalyxIIBcR5yLAZItiFyJiEv4Zb36OhXu78AP7o09O</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ConfSolv: Prediction of Solute Conformer-Free Energies across a Range of Solvents</title><source>ACS Publications</source><source>Lirias (KU Leuven Association)</source><creator>Pattanaik, Lagnajit ; Menon, Angiras ; Settels, Volker ; Spiekermann, Kevin A ; Tan, Zipei ; Vermeire, Florence H ; Sandfort, Frederik ; Eiden, Philipp ; Green, William H</creator><creatorcontrib>Pattanaik, Lagnajit ; Menon, Angiras ; Settels, Volker ; Spiekermann, Kevin A ; Tan, Zipei ; Vermeire, Florence H ; Sandfort, Frederik ; Eiden, Philipp ; Green, William H</creatorcontrib><description>Predicting Gibbs free energy of solution is key to understanding the solvent effects on thermodynamics and reaction rates for kinetic modeling. Accurately computing solution free energies requires the enumeration and evaluation of relevant solute conformers in solution. However, even after generation of relevant conformers, determining their free energy of solution requires an expensive workflow consisting of several ab initio computational chemistry calculations. To help address this challenge, we generate a large data set of solution free energies for nearly 44,000 solutes with almost 9 million conformers calculated in 41 different solvents using density functional theory and COSMO-RS and quantify the impact of solute conformers on the solution free energy. We then train a message passing neural network to predict the relative solution free energies of a set of solute conformers, enabling the identification of a small subset of thermodynamically relevant conformers. The model offers substantial computational time savings with predictions usually substantially within 1 kcal/mol of the free energy of the solution calculated by using computational chemical methods.</description><identifier>ISSN: 1520-6106</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>Journal Of Physical Chemistry B, 2023-11, Vol.127 (47), p.10151-10170</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27837</link.rule.ids></links><search><creatorcontrib>Pattanaik, Lagnajit</creatorcontrib><creatorcontrib>Menon, Angiras</creatorcontrib><creatorcontrib>Settels, Volker</creatorcontrib><creatorcontrib>Spiekermann, Kevin A</creatorcontrib><creatorcontrib>Tan, Zipei</creatorcontrib><creatorcontrib>Vermeire, Florence H</creatorcontrib><creatorcontrib>Sandfort, Frederik</creatorcontrib><creatorcontrib>Eiden, Philipp</creatorcontrib><creatorcontrib>Green, William H</creatorcontrib><title>ConfSolv: Prediction of Solute Conformer-Free Energies across a Range of Solvents</title><title>Journal Of Physical Chemistry B</title><description>Predicting Gibbs free energy of solution is key to understanding the solvent effects on thermodynamics and reaction rates for kinetic modeling. Accurately computing solution free energies requires the enumeration and evaluation of relevant solute conformers in solution. However, even after generation of relevant conformers, determining their free energy of solution requires an expensive workflow consisting of several ab initio computational chemistry calculations. To help address this challenge, we generate a large data set of solution free energies for nearly 44,000 solutes with almost 9 million conformers calculated in 41 different solvents using density functional theory and COSMO-RS and quantify the impact of solute conformers on the solution free energy. We then train a message passing neural network to predict the relative solution free energies of a set of solute conformers, enabling the identification of a small subset of thermodynamically relevant conformers. The model offers substantial computational time savings with predictions usually substantially within 1 kcal/mol of the free energy of the solution calculated by using computational chemical methods.</description><issn>1520-6106</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVi8sOgjAQRbvQRHz8w6xNMGUQFLcE4tLXvmlgICi2pi3EzxcTPkBXJzn33Anzggi5Hwc8nrG5tXfOMcJ97LFzqlV11W1_gJOhsilcoxXoCgbXOYLvrM2TjJ8bIsgUmbohC7Iw2g6Ai1Q1jYeelLNLNq1ka2k1csHWeXZLj_6ja6kbElHalyxIIBcR5yLAZItiFyJiEv4Zb36OhXu78AP7o09O</recordid><startdate>20231115</startdate><enddate>20231115</enddate><creator>Pattanaik, Lagnajit</creator><creator>Menon, Angiras</creator><creator>Settels, Volker</creator><creator>Spiekermann, Kevin A</creator><creator>Tan, Zipei</creator><creator>Vermeire, Florence H</creator><creator>Sandfort, Frederik</creator><creator>Eiden, Philipp</creator><creator>Green, William H</creator><general>American Chemical Society</general><scope>FZOIL</scope></search><sort><creationdate>20231115</creationdate><title>ConfSolv: Prediction of Solute Conformer-Free Energies across a Range of Solvents</title><author>Pattanaik, Lagnajit ; Menon, Angiras ; Settels, Volker ; Spiekermann, Kevin A ; Tan, Zipei ; Vermeire, Florence H ; Sandfort, Frederik ; Eiden, Philipp ; Green, William H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_20_500_12942_7322293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pattanaik, Lagnajit</creatorcontrib><creatorcontrib>Menon, Angiras</creatorcontrib><creatorcontrib>Settels, Volker</creatorcontrib><creatorcontrib>Spiekermann, Kevin A</creatorcontrib><creatorcontrib>Tan, Zipei</creatorcontrib><creatorcontrib>Vermeire, Florence H</creatorcontrib><creatorcontrib>Sandfort, Frederik</creatorcontrib><creatorcontrib>Eiden, Philipp</creatorcontrib><creatorcontrib>Green, William H</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Journal Of Physical Chemistry B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pattanaik, Lagnajit</au><au>Menon, Angiras</au><au>Settels, Volker</au><au>Spiekermann, Kevin A</au><au>Tan, Zipei</au><au>Vermeire, Florence H</au><au>Sandfort, Frederik</au><au>Eiden, Philipp</au><au>Green, William H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ConfSolv: Prediction of Solute Conformer-Free Energies across a Range of Solvents</atitle><jtitle>Journal Of Physical Chemistry B</jtitle><date>2023-11-15</date><risdate>2023</risdate><volume>127</volume><issue>47</issue><spage>10151</spage><epage>10170</epage><pages>10151-10170</pages><issn>1520-6106</issn><abstract>Predicting Gibbs free energy of solution is key to understanding the solvent effects on thermodynamics and reaction rates for kinetic modeling. Accurately computing solution free energies requires the enumeration and evaluation of relevant solute conformers in solution. However, even after generation of relevant conformers, determining their free energy of solution requires an expensive workflow consisting of several ab initio computational chemistry calculations. To help address this challenge, we generate a large data set of solution free energies for nearly 44,000 solutes with almost 9 million conformers calculated in 41 different solvents using density functional theory and COSMO-RS and quantify the impact of solute conformers on the solution free energy. We then train a message passing neural network to predict the relative solution free energies of a set of solute conformers, enabling the identification of a small subset of thermodynamically relevant conformers. The model offers substantial computational time savings with predictions usually substantially within 1 kcal/mol of the free energy of the solution calculated by using computational chemical methods.</abstract><pub>American Chemical Society</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | Journal Of Physical Chemistry B, 2023-11, Vol.127 (47), p.10151-10170 |
issn | 1520-6106 |
language | eng |
recordid | cdi_kuleuven_dspace_20_500_12942_732229 |
source | ACS Publications; Lirias (KU Leuven Association) |
title | ConfSolv: Prediction of Solute Conformer-Free Energies across a Range of Solvents |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A10%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ConfSolv:%20Prediction%20of%20Solute%20Conformer-Free%20Energies%20across%20a%20Range%20of%20Solvents&rft.jtitle=Journal%20Of%20Physical%20Chemistry%20B&rft.au=Pattanaik,%20Lagnajit&rft.date=2023-11-15&rft.volume=127&rft.issue=47&rft.spage=10151&rft.epage=10170&rft.pages=10151-10170&rft.issn=1520-6106&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E20_500_12942_732229%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |