VLTI/GRAVITY Observations and Characterization of the Brown Dwarf Companion HD 72946 B
Tension remains between the observed and modeled properties of substellar objects, but objects in binary orbits, with known dynamical masses, can provide a way forward. HD 72946 B is a recently imaged brown dwarf companion to a nearby, solar-type star. We achieve ∼100 μas relative astrometry of HD 7...
Gespeichert in:
Veröffentlicht in: | ASTROPHYSICAL JOURNAL 2023-10, Vol.956 (2) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tension remains between the observed and modeled properties of substellar objects, but objects in binary orbits, with known dynamical masses, can provide a way forward. HD 72946 B is a recently imaged brown dwarf companion to a nearby, solar-type star. We achieve ∼100 μas relative astrometry of HD 72946 B in the K band using VLTI/GRAVITY, unprecedented for a benchmark brown dwarf. We fit an ensemble of measurements of the orbit using orbitize! and derive a strong dynamical mass constraint MB = 69.5 ± 0.5 MJup assuming a strong prior on the host star mass MA = 0.97 ± 0.01 M⊙ from an updated stellar analysis. We fit the spectrum of the companion to a grid of self-consistent BT-Settl-CIFIST model atmospheres, and perform atmospheric retrievals using petitRADTRANS. A dynamical mass prior only marginally influences the sampled distribution of effective temperature, but has a large influence on the surface gravity and radius, as expected. The dynamical mass alone does not strongly influence retrieved pressure-temperature or cloud parameters within our current retrieval setup. Independently of the cloud prescription and prior assumptions, we find agreement within ±2σ between the C/O of the host (0.52 ± 0.05) and brown dwarf (0.43-0.63), as expected from a molecular cloud collapse formation scenario, but our retrieved metallicities are implausibly high (0.6-0.8) in light of the excellent agreement of the data with the solar-abundance model grid. Future work on our retrieval framework will seek to resolve this tension. Additional study of low surface gravity objects is necessary to assess the influence of a dynamical mass prior on atmospheric analysis. |
---|---|
ISSN: | 0004-637X |