IGG: Improved Graph Generation for Domain Adaptive Object Detection

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Li, Pengteng, He, Ying, Yu, F. Richard, Song, Pinhao, Yin, Dongfu, Zhou, Guang
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1324
container_issue
container_start_page 1314
container_title
container_volume
creator Li, Pengteng
He, Ying
Yu, F. Richard
Song, Pinhao
Yin, Dongfu
Zhou, Guang
description
format Conference Proceeding
fullrecord <record><control><sourceid>kuleuven_FZOIL</sourceid><recordid>TN_cdi_kuleuven_dspace_20_500_12942_730991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20_500_12942_730991</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_20_500_12942_7309913</originalsourceid><addsrcrecordid>eNqVzL0OgjAUQOEmxkSDvENnE80tLYG6GVB0cnFvClwiyk9TCvHxZfABdDrLl7MgvoxkLAAiYBCHK-IPQ51DyJlgAuI1Sa5ZdqDX1th-wpJmVpsHzbBDq13dd7TqLU37VtcdPZbauHpCesufWDiaopszow1ZVroZ0P_WI9vz6Z5cdq-xwXHCTpWD0QWqAFQIoFggRaAiDlIy7pH9z1i5t-N_3T93P0t4</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>IGG: Improved Graph Generation for Domain Adaptive Object Detection</title><source>Lirias (KU Leuven Association)</source><creator>Li, Pengteng ; He, Ying ; Yu, F. Richard ; Song, Pinhao ; Yin, Dongfu ; Zhou, Guang</creator><creatorcontrib>Li, Pengteng ; He, Ying ; Yu, F. Richard ; Song, Pinhao ; Yin, Dongfu ; Zhou, Guang</creatorcontrib><identifier>ISBN: 9798400701085</identifier><language>eng</language><publisher>Association for Computing Machinery</publisher><ispartof>Proceedings of the 31st ACM International Conference on Multimedia, 2023, p.1314-1324</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,315,776,27839</link.rule.ids><linktorsrc>$$Uhttps://lirias.kuleuven.be/handle/20.500.12942/730991$$EView_record_in_KU_Leuven_Association$$FView_record_in_$$GKU_Leuven_Association</linktorsrc></links><search><creatorcontrib>Li, Pengteng</creatorcontrib><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Yu, F. Richard</creatorcontrib><creatorcontrib>Song, Pinhao</creatorcontrib><creatorcontrib>Yin, Dongfu</creatorcontrib><creatorcontrib>Zhou, Guang</creatorcontrib><title>IGG: Improved Graph Generation for Domain Adaptive Object Detection</title><title>Proceedings of the 31st ACM International Conference on Multimedia</title><isbn>9798400701085</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVzL0OgjAUQOEmxkSDvENnE80tLYG6GVB0cnFvClwiyk9TCvHxZfABdDrLl7MgvoxkLAAiYBCHK-IPQ51DyJlgAuI1Sa5ZdqDX1th-wpJmVpsHzbBDq13dd7TqLU37VtcdPZbauHpCesufWDiaopszow1ZVroZ0P_WI9vz6Z5cdq-xwXHCTpWD0QWqAFQIoFggRaAiDlIy7pH9z1i5t-N_3T93P0t4</recordid><startdate>20231027</startdate><enddate>20231027</enddate><creator>Li, Pengteng</creator><creator>He, Ying</creator><creator>Yu, F. Richard</creator><creator>Song, Pinhao</creator><creator>Yin, Dongfu</creator><creator>Zhou, Guang</creator><general>Association for Computing Machinery</general><scope>FZOIL</scope></search><sort><creationdate>20231027</creationdate><title>IGG: Improved Graph Generation for Domain Adaptive Object Detection</title><author>Li, Pengteng ; He, Ying ; Yu, F. Richard ; Song, Pinhao ; Yin, Dongfu ; Zhou, Guang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_20_500_12942_7309913</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Li, Pengteng</creatorcontrib><creatorcontrib>He, Ying</creatorcontrib><creatorcontrib>Yu, F. Richard</creatorcontrib><creatorcontrib>Song, Pinhao</creatorcontrib><creatorcontrib>Yin, Dongfu</creatorcontrib><creatorcontrib>Zhou, Guang</creatorcontrib><collection>Lirias (KU Leuven Association)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Pengteng</au><au>He, Ying</au><au>Yu, F. Richard</au><au>Song, Pinhao</au><au>Yin, Dongfu</au><au>Zhou, Guang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>IGG: Improved Graph Generation for Domain Adaptive Object Detection</atitle><btitle>Proceedings of the 31st ACM International Conference on Multimedia</btitle><date>2023-10-27</date><risdate>2023</risdate><spage>1314</spage><epage>1324</epage><pages>1314-1324</pages><isbn>9798400701085</isbn><pub>Association for Computing Machinery</pub></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9798400701085
ispartof Proceedings of the 31st ACM International Conference on Multimedia, 2023, p.1314-1324
issn
language eng
recordid cdi_kuleuven_dspace_20_500_12942_730991
source Lirias (KU Leuven Association)
title IGG: Improved Graph Generation for Domain Adaptive Object Detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven_FZOIL&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=IGG:%20Improved%20Graph%20Generation%20for%20Domain%20Adaptive%20Object%20Detection&rft.btitle=Proceedings%20of%20the%2031st%20ACM%20International%20Conference%20on%20Multimedia&rft.au=Li,%20Pengteng&rft.date=2023-10-27&rft.spage=1314&rft.epage=1324&rft.pages=1314-1324&rft.isbn=9798400701085&rft_id=info:doi/&rft_dat=%3Ckuleuven_FZOIL%3E20_500_12942_730991%3C/kuleuven_FZOIL%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true