Dense, 11 V-tolerant, Balanced Stimulator IC with Digital Time-domain Calibration for <100nA Error

This article presents a multichannel neurostimulator implementing a novel charge balancing technique to achieve maximal integration. Safe neurostimulation demands accurate charge balancing of the stimulation waveforms to prevent charge build-up on the electrode-tissue interface. We propose digital t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ieee Transactions On Biomedical Circuits And Systems 2023-10, Vol.17 (5)
Hauptverfasser: Feyerick, Maxime, Dehaene, Wim
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Ieee Transactions On Biomedical Circuits And Systems
container_volume 17
creator Feyerick, Maxime
Dehaene, Wim
description This article presents a multichannel neurostimulator implementing a novel charge balancing technique to achieve maximal integration. Safe neurostimulation demands accurate charge balancing of the stimulation waveforms to prevent charge build-up on the electrode-tissue interface. We propose digital time-domain calibration (DTDC), which adjusts the second phase of the biphasic stimulation pulses digitally, based on a one-time characterization of all stimulator channels with an on-chip ADC. Accurate control of the stimulation current amplitude is loosened in exchange for time-domain corrections, relieving circuit matching constraints and consequentially saving channel area. A theoretical analysis of DTDC is presented, establishing expressions for the required time resolution and the new, relaxed circuit matching constraints. To validate the DTDC principle, a 16-channel stimulator was implemented in 65 nm CMOS, requiring only 0.0141 mm 2 area/channel. Despite being implemented in a standard CMOS technology, 10.4 V compliance is achieved for compatibility with high-impedance microelectrode arrays typical for high-resolution neural prostheses. To the authors' knowledge, this is the first stimulator in a 65 nm low-voltage process achieving over 10 V output swing. Measurements after calibration show the DC error is successfully reduced below 96 nA on all channels. Static power consumption is 20.3 µW/channel.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_20_500_12942_726885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20_500_12942_726885</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_20_500_12942_7268853</originalsourceid><addsrcrecordid>eNqVyr1uwjAQAGAPIJX-vMPNiFS2EwORurQBROeirtZBjtbUsSv7An18GHiAMn3LNxAjVZe6qExl7sR9zgcpzVTXeiS2CwqZJqAUfBYcPSUMPIE39Bh21MIHu673yDHBewMnx9-wcF-O0cPGdVS0sUMXoEHvtgnZxQD7y31RUoZXWKYU06MY7tFnerr6IMar5aZZFz-9p_5Iwbb5F3dktbRGSqt0XWk709P53JQ35ud_Z8t_XJ4BtdpTsQ</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dense, 11 V-tolerant, Balanced Stimulator IC with Digital Time-domain Calibration for &lt;100nA Error</title><source>Lirias (KU Leuven Association)</source><source>IEEE Electronic Library (IEL)</source><creator>Feyerick, Maxime ; Dehaene, Wim</creator><creatorcontrib>Feyerick, Maxime ; Dehaene, Wim</creatorcontrib><description>This article presents a multichannel neurostimulator implementing a novel charge balancing technique to achieve maximal integration. Safe neurostimulation demands accurate charge balancing of the stimulation waveforms to prevent charge build-up on the electrode-tissue interface. We propose digital time-domain calibration (DTDC), which adjusts the second phase of the biphasic stimulation pulses digitally, based on a one-time characterization of all stimulator channels with an on-chip ADC. Accurate control of the stimulation current amplitude is loosened in exchange for time-domain corrections, relieving circuit matching constraints and consequentially saving channel area. A theoretical analysis of DTDC is presented, establishing expressions for the required time resolution and the new, relaxed circuit matching constraints. To validate the DTDC principle, a 16-channel stimulator was implemented in 65 nm CMOS, requiring only 0.0141 mm 2 area/channel. Despite being implemented in a standard CMOS technology, 10.4 V compliance is achieved for compatibility with high-impedance microelectrode arrays typical for high-resolution neural prostheses. To the authors' knowledge, this is the first stimulator in a 65 nm low-voltage process achieving over 10 V output swing. Measurements after calibration show the DC error is successfully reduced below 96 nA on all channels. Static power consumption is 20.3 µW/channel.</description><identifier>ISSN: 1932-4545</identifier><language>eng</language><publisher>Institute of Electrical and Electronics Engineers</publisher><ispartof>Ieee Transactions On Biomedical Circuits And Systems, 2023-10, Vol.17 (5)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27839</link.rule.ids></links><search><creatorcontrib>Feyerick, Maxime</creatorcontrib><creatorcontrib>Dehaene, Wim</creatorcontrib><title>Dense, 11 V-tolerant, Balanced Stimulator IC with Digital Time-domain Calibration for &lt;100nA Error</title><title>Ieee Transactions On Biomedical Circuits And Systems</title><description>This article presents a multichannel neurostimulator implementing a novel charge balancing technique to achieve maximal integration. Safe neurostimulation demands accurate charge balancing of the stimulation waveforms to prevent charge build-up on the electrode-tissue interface. We propose digital time-domain calibration (DTDC), which adjusts the second phase of the biphasic stimulation pulses digitally, based on a one-time characterization of all stimulator channels with an on-chip ADC. Accurate control of the stimulation current amplitude is loosened in exchange for time-domain corrections, relieving circuit matching constraints and consequentially saving channel area. A theoretical analysis of DTDC is presented, establishing expressions for the required time resolution and the new, relaxed circuit matching constraints. To validate the DTDC principle, a 16-channel stimulator was implemented in 65 nm CMOS, requiring only 0.0141 mm 2 area/channel. Despite being implemented in a standard CMOS technology, 10.4 V compliance is achieved for compatibility with high-impedance microelectrode arrays typical for high-resolution neural prostheses. To the authors' knowledge, this is the first stimulator in a 65 nm low-voltage process achieving over 10 V output swing. Measurements after calibration show the DC error is successfully reduced below 96 nA on all channels. Static power consumption is 20.3 µW/channel.</description><issn>1932-4545</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVyr1uwjAQAGAPIJX-vMPNiFS2EwORurQBROeirtZBjtbUsSv7An18GHiAMn3LNxAjVZe6qExl7sR9zgcpzVTXeiS2CwqZJqAUfBYcPSUMPIE39Bh21MIHu673yDHBewMnx9-wcF-O0cPGdVS0sUMXoEHvtgnZxQD7y31RUoZXWKYU06MY7tFnerr6IMar5aZZFz-9p_5Iwbb5F3dktbRGSqt0XWk709P53JQ35ud_Z8t_XJ4BtdpTsQ</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Feyerick, Maxime</creator><creator>Dehaene, Wim</creator><general>Institute of Electrical and Electronics Engineers</general><scope>FZOIL</scope></search><sort><creationdate>202310</creationdate><title>Dense, 11 V-tolerant, Balanced Stimulator IC with Digital Time-domain Calibration for &lt;100nA Error</title><author>Feyerick, Maxime ; Dehaene, Wim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_20_500_12942_7268853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feyerick, Maxime</creatorcontrib><creatorcontrib>Dehaene, Wim</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Ieee Transactions On Biomedical Circuits And Systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feyerick, Maxime</au><au>Dehaene, Wim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dense, 11 V-tolerant, Balanced Stimulator IC with Digital Time-domain Calibration for &lt;100nA Error</atitle><jtitle>Ieee Transactions On Biomedical Circuits And Systems</jtitle><date>2023-10</date><risdate>2023</risdate><volume>17</volume><issue>5</issue><issn>1932-4545</issn><abstract>This article presents a multichannel neurostimulator implementing a novel charge balancing technique to achieve maximal integration. Safe neurostimulation demands accurate charge balancing of the stimulation waveforms to prevent charge build-up on the electrode-tissue interface. We propose digital time-domain calibration (DTDC), which adjusts the second phase of the biphasic stimulation pulses digitally, based on a one-time characterization of all stimulator channels with an on-chip ADC. Accurate control of the stimulation current amplitude is loosened in exchange for time-domain corrections, relieving circuit matching constraints and consequentially saving channel area. A theoretical analysis of DTDC is presented, establishing expressions for the required time resolution and the new, relaxed circuit matching constraints. To validate the DTDC principle, a 16-channel stimulator was implemented in 65 nm CMOS, requiring only 0.0141 mm 2 area/channel. Despite being implemented in a standard CMOS technology, 10.4 V compliance is achieved for compatibility with high-impedance microelectrode arrays typical for high-resolution neural prostheses. To the authors' knowledge, this is the first stimulator in a 65 nm low-voltage process achieving over 10 V output swing. Measurements after calibration show the DC error is successfully reduced below 96 nA on all channels. Static power consumption is 20.3 µW/channel.</abstract><pub>Institute of Electrical and Electronics Engineers</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-4545
ispartof Ieee Transactions On Biomedical Circuits And Systems, 2023-10, Vol.17 (5)
issn 1932-4545
language eng
recordid cdi_kuleuven_dspace_20_500_12942_726885
source Lirias (KU Leuven Association); IEEE Electronic Library (IEL)
title Dense, 11 V-tolerant, Balanced Stimulator IC with Digital Time-domain Calibration for <100nA Error
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A22%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dense,%2011%20V-tolerant,%20Balanced%20Stimulator%20IC%20with%20Digital%20Time-domain%20Calibration%20for%20%3C100nA%20Error&rft.jtitle=Ieee%20Transactions%20On%20Biomedical%20Circuits%20And%20Systems&rft.au=Feyerick,%20Maxime&rft.date=2023-10&rft.volume=17&rft.issue=5&rft.issn=1932-4545&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E20_500_12942_726885%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true