Peak Muscle and Joint Contact Forces of Running with Increased Duty Factors

PURPOSE: Running with increased duty factors (DF) has been shown to effectively reduce external forces during running. In this study, we investigated whether running with increased DF (INCR) also reduces internal musculoskeletal loading measures, defined as peak muscle forces, muscle force impulses,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MEDICINE & SCIENCE IN SPORTS & EXERCISE 2022-11, Vol.54 (11), p.1842-1849
Hauptverfasser: Bonnaerens, Senne, Van Rossom, Sam, Fiers, Pieter, Van Caekenberghe, Ine, Derie, Rud, Kaneko, Yasunori, Frederick, Edward, Vanwanseele, Benedicte, Aerts, Peter, De Clercq, Dirk, Segers, Veerle
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1849
container_issue 11
container_start_page 1842
container_title MEDICINE & SCIENCE IN SPORTS & EXERCISE
container_volume 54
creator Bonnaerens, Senne
Van Rossom, Sam
Fiers, Pieter
Van Caekenberghe, Ine
Derie, Rud
Kaneko, Yasunori
Frederick, Edward
Vanwanseele, Benedicte
Aerts, Peter
De Clercq, Dirk
Segers, Veerle
description PURPOSE: Running with increased duty factors (DF) has been shown to effectively reduce external forces during running. In this study, we investigated whether running with increased DF (INCR) also reduces internal musculoskeletal loading measures, defined as peak muscle forces, muscle force impulses, and peak joint contact forces compared with a runners' preferred running pattern (PREF). METHOD: Ten subjects were instructed to run with increased DF at 2.1 m·s -1 . Ground reaction forces and three-dimensional kinematics were simultaneously measured. A musculoskeletal model was used to estimate muscle forces based on a dynamic optimization approach, which in turn were used to calculate muscle force impulses and (resultant and three-dimensional) joint contact forces of the ankle, knee, and hip joint during stance. RESULTS: Runners successfully increased their DF from 40.6% to 49.2% on average. This reduced peak muscle forces of muscles that contribute to support during running, i.e., the ankle plantar flexors (-19%), knee extensors (-18%), and hip extensors (-15%). As a consequence, peak joint contact forces of the ankle, knee, and hip joint reduced in the INCR condition. However, several hip flexors generated higher peak muscle forces near the end of stance. CONCLUSIONS: Running with increased DF lowers internal loading measures related to support during stance. Although some swing-related muscles generated higher forces near the end of stance, running with increased DF can be considered as a preventive strategy to reduce the occurrence of running-related injuries, especially in running populations that are prone to overuse injuries.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_20_500_12942_721290</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20_500_12942_721290</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_20_500_12942_7212903</originalsourceid><addsrcrecordid>eNqVykkKwjAUANAsFKzDHf5aqGSwlK6rxQFBxH0I6a_WlkSaxOH2duEBdPU2b0AiyrIkzphgIzJ27kYpTYVgEdkfUTVwCE63CMqUsLO18ZBb45X2UNhOowNbwSkYU5sLPGt_ha3RHSqHJayCf0PRV9u5KRlWqnU4-zoh82J9zjdxE1oMDzSydHelUXIqE0ol49mSy5T3UvFnXvycpX958QGSaUzE</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Peak Muscle and Joint Contact Forces of Running with Increased Duty Factors</title><source>Lirias (KU Leuven Association)</source><source>Journals@Ovid LWW Legacy Archive</source><source>Journals@Ovid Complete</source><creator>Bonnaerens, Senne ; Van Rossom, Sam ; Fiers, Pieter ; Van Caekenberghe, Ine ; Derie, Rud ; Kaneko, Yasunori ; Frederick, Edward ; Vanwanseele, Benedicte ; Aerts, Peter ; De Clercq, Dirk ; Segers, Veerle</creator><creatorcontrib>Bonnaerens, Senne ; Van Rossom, Sam ; Fiers, Pieter ; Van Caekenberghe, Ine ; Derie, Rud ; Kaneko, Yasunori ; Frederick, Edward ; Vanwanseele, Benedicte ; Aerts, Peter ; De Clercq, Dirk ; Segers, Veerle</creatorcontrib><description>PURPOSE: Running with increased duty factors (DF) has been shown to effectively reduce external forces during running. In this study, we investigated whether running with increased DF (INCR) also reduces internal musculoskeletal loading measures, defined as peak muscle forces, muscle force impulses, and peak joint contact forces compared with a runners' preferred running pattern (PREF). METHOD: Ten subjects were instructed to run with increased DF at 2.1 m·s -1 . Ground reaction forces and three-dimensional kinematics were simultaneously measured. A musculoskeletal model was used to estimate muscle forces based on a dynamic optimization approach, which in turn were used to calculate muscle force impulses and (resultant and three-dimensional) joint contact forces of the ankle, knee, and hip joint during stance. RESULTS: Runners successfully increased their DF from 40.6% to 49.2% on average. This reduced peak muscle forces of muscles that contribute to support during running, i.e., the ankle plantar flexors (-19%), knee extensors (-18%), and hip extensors (-15%). As a consequence, peak joint contact forces of the ankle, knee, and hip joint reduced in the INCR condition. However, several hip flexors generated higher peak muscle forces near the end of stance. CONCLUSIONS: Running with increased DF lowers internal loading measures related to support during stance. Although some swing-related muscles generated higher forces near the end of stance, running with increased DF can be considered as a preventive strategy to reduce the occurrence of running-related injuries, especially in running populations that are prone to overuse injuries.</description><identifier>ISSN: 0195-9131</identifier><language>eng</language><publisher>LIPPINCOTT WILLIAMS &amp; WILKINS</publisher><ispartof>MEDICINE &amp; SCIENCE IN SPORTS &amp; EXERCISE, 2022-11, Vol.54 (11), p.1842-1849</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,27859</link.rule.ids></links><search><creatorcontrib>Bonnaerens, Senne</creatorcontrib><creatorcontrib>Van Rossom, Sam</creatorcontrib><creatorcontrib>Fiers, Pieter</creatorcontrib><creatorcontrib>Van Caekenberghe, Ine</creatorcontrib><creatorcontrib>Derie, Rud</creatorcontrib><creatorcontrib>Kaneko, Yasunori</creatorcontrib><creatorcontrib>Frederick, Edward</creatorcontrib><creatorcontrib>Vanwanseele, Benedicte</creatorcontrib><creatorcontrib>Aerts, Peter</creatorcontrib><creatorcontrib>De Clercq, Dirk</creatorcontrib><creatorcontrib>Segers, Veerle</creatorcontrib><title>Peak Muscle and Joint Contact Forces of Running with Increased Duty Factors</title><title>MEDICINE &amp; SCIENCE IN SPORTS &amp; EXERCISE</title><description>PURPOSE: Running with increased duty factors (DF) has been shown to effectively reduce external forces during running. In this study, we investigated whether running with increased DF (INCR) also reduces internal musculoskeletal loading measures, defined as peak muscle forces, muscle force impulses, and peak joint contact forces compared with a runners' preferred running pattern (PREF). METHOD: Ten subjects were instructed to run with increased DF at 2.1 m·s -1 . Ground reaction forces and three-dimensional kinematics were simultaneously measured. A musculoskeletal model was used to estimate muscle forces based on a dynamic optimization approach, which in turn were used to calculate muscle force impulses and (resultant and three-dimensional) joint contact forces of the ankle, knee, and hip joint during stance. RESULTS: Runners successfully increased their DF from 40.6% to 49.2% on average. This reduced peak muscle forces of muscles that contribute to support during running, i.e., the ankle plantar flexors (-19%), knee extensors (-18%), and hip extensors (-15%). As a consequence, peak joint contact forces of the ankle, knee, and hip joint reduced in the INCR condition. However, several hip flexors generated higher peak muscle forces near the end of stance. CONCLUSIONS: Running with increased DF lowers internal loading measures related to support during stance. Although some swing-related muscles generated higher forces near the end of stance, running with increased DF can be considered as a preventive strategy to reduce the occurrence of running-related injuries, especially in running populations that are prone to overuse injuries.</description><issn>0195-9131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVykkKwjAUANAsFKzDHf5aqGSwlK6rxQFBxH0I6a_WlkSaxOH2duEBdPU2b0AiyrIkzphgIzJ27kYpTYVgEdkfUTVwCE63CMqUsLO18ZBb45X2UNhOowNbwSkYU5sLPGt_ha3RHSqHJayCf0PRV9u5KRlWqnU4-zoh82J9zjdxE1oMDzSydHelUXIqE0ol49mSy5T3UvFnXvycpX958QGSaUzE</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Bonnaerens, Senne</creator><creator>Van Rossom, Sam</creator><creator>Fiers, Pieter</creator><creator>Van Caekenberghe, Ine</creator><creator>Derie, Rud</creator><creator>Kaneko, Yasunori</creator><creator>Frederick, Edward</creator><creator>Vanwanseele, Benedicte</creator><creator>Aerts, Peter</creator><creator>De Clercq, Dirk</creator><creator>Segers, Veerle</creator><general>LIPPINCOTT WILLIAMS &amp; WILKINS</general><scope>FZOIL</scope></search><sort><creationdate>202211</creationdate><title>Peak Muscle and Joint Contact Forces of Running with Increased Duty Factors</title><author>Bonnaerens, Senne ; Van Rossom, Sam ; Fiers, Pieter ; Van Caekenberghe, Ine ; Derie, Rud ; Kaneko, Yasunori ; Frederick, Edward ; Vanwanseele, Benedicte ; Aerts, Peter ; De Clercq, Dirk ; Segers, Veerle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_20_500_12942_7212903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonnaerens, Senne</creatorcontrib><creatorcontrib>Van Rossom, Sam</creatorcontrib><creatorcontrib>Fiers, Pieter</creatorcontrib><creatorcontrib>Van Caekenberghe, Ine</creatorcontrib><creatorcontrib>Derie, Rud</creatorcontrib><creatorcontrib>Kaneko, Yasunori</creatorcontrib><creatorcontrib>Frederick, Edward</creatorcontrib><creatorcontrib>Vanwanseele, Benedicte</creatorcontrib><creatorcontrib>Aerts, Peter</creatorcontrib><creatorcontrib>De Clercq, Dirk</creatorcontrib><creatorcontrib>Segers, Veerle</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>MEDICINE &amp; SCIENCE IN SPORTS &amp; EXERCISE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonnaerens, Senne</au><au>Van Rossom, Sam</au><au>Fiers, Pieter</au><au>Van Caekenberghe, Ine</au><au>Derie, Rud</au><au>Kaneko, Yasunori</au><au>Frederick, Edward</au><au>Vanwanseele, Benedicte</au><au>Aerts, Peter</au><au>De Clercq, Dirk</au><au>Segers, Veerle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Peak Muscle and Joint Contact Forces of Running with Increased Duty Factors</atitle><jtitle>MEDICINE &amp; SCIENCE IN SPORTS &amp; EXERCISE</jtitle><date>2022-11</date><risdate>2022</risdate><volume>54</volume><issue>11</issue><spage>1842</spage><epage>1849</epage><pages>1842-1849</pages><issn>0195-9131</issn><abstract>PURPOSE: Running with increased duty factors (DF) has been shown to effectively reduce external forces during running. In this study, we investigated whether running with increased DF (INCR) also reduces internal musculoskeletal loading measures, defined as peak muscle forces, muscle force impulses, and peak joint contact forces compared with a runners' preferred running pattern (PREF). METHOD: Ten subjects were instructed to run with increased DF at 2.1 m·s -1 . Ground reaction forces and three-dimensional kinematics were simultaneously measured. A musculoskeletal model was used to estimate muscle forces based on a dynamic optimization approach, which in turn were used to calculate muscle force impulses and (resultant and three-dimensional) joint contact forces of the ankle, knee, and hip joint during stance. RESULTS: Runners successfully increased their DF from 40.6% to 49.2% on average. This reduced peak muscle forces of muscles that contribute to support during running, i.e., the ankle plantar flexors (-19%), knee extensors (-18%), and hip extensors (-15%). As a consequence, peak joint contact forces of the ankle, knee, and hip joint reduced in the INCR condition. However, several hip flexors generated higher peak muscle forces near the end of stance. CONCLUSIONS: Running with increased DF lowers internal loading measures related to support during stance. Although some swing-related muscles generated higher forces near the end of stance, running with increased DF can be considered as a preventive strategy to reduce the occurrence of running-related injuries, especially in running populations that are prone to overuse injuries.</abstract><pub>LIPPINCOTT WILLIAMS &amp; WILKINS</pub></addata></record>
fulltext fulltext
identifier ISSN: 0195-9131
ispartof MEDICINE & SCIENCE IN SPORTS & EXERCISE, 2022-11, Vol.54 (11), p.1842-1849
issn 0195-9131
language eng
recordid cdi_kuleuven_dspace_20_500_12942_721290
source Lirias (KU Leuven Association); Journals@Ovid LWW Legacy Archive; Journals@Ovid Complete
title Peak Muscle and Joint Contact Forces of Running with Increased Duty Factors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T11%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Peak%20Muscle%20and%20Joint%20Contact%20Forces%20of%20Running%20with%20Increased%20Duty%20Factors&rft.jtitle=MEDICINE%20&%20SCIENCE%20IN%20SPORTS%20&%20EXERCISE&rft.au=Bonnaerens,%20Senne&rft.date=2022-11&rft.volume=54&rft.issue=11&rft.spage=1842&rft.epage=1849&rft.pages=1842-1849&rft.issn=0195-9131&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E20_500_12942_721290%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true