Rigorous analysis of the axial acoustic radiation force on a spherical object for single-beam acoustic tweezing applications

Acoustic tweezers are increasingly utilized for the contactless manipulation of small particles. This paper provides a theoretical model demonstrating the acoustic manipulation capabilities of single-beam acoustic transducers. Analytical formulas are derived for the acoustic radiation force on an is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022-06, Vol.151 (6), p.3615-3625
Hauptverfasser: Weekers, Bart P, Rottenberg, Xavier, Lagae, Liesbet, Rochus, Veronique
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3625
container_issue 6
container_start_page 3615
container_title JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA
container_volume 151
creator Weekers, Bart P
Rottenberg, Xavier
Lagae, Liesbet
Rochus, Veronique
description Acoustic tweezers are increasingly utilized for the contactless manipulation of small particles. This paper provides a theoretical model demonstrating the acoustic manipulation capabilities of single-beam acoustic transducers. Analytical formulas are derived for the acoustic radiation force on an isotropic spherical object of arbitrary size, centered on a circular piston, simply supported and clamped radiator in an inviscid fluid. Using these results, the existence of a negative axial force pulling the object closer to the radiator is revealed and explored. These findings offer further insight into the feasibility of trapping objects in the near-field of a single-beam acoustic transducer. The calculations illustrate the trapping capabilities of the different emitters as a function of radiator size, particle size, and distance from the source and highlight the impact of radiator boundary conditions. Manipulation of a cell-like fluid sphere in water and an expanded polystyrene sphere in air are studied in more detail with results that are validated through finite element analysis. The developed theoretical model allows fast evaluation of acoustic radiation forces which could aid in the development of relatively simple and inexpensive contactless manipulation solutions.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_20_500_12942_719062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20_500_12942_719062</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_20_500_12942_7190623</originalsourceid><addsrcrecordid>eNqVjMtuwjAQRb0ACQr8w6yRUjkPAlkjEOuqe2tiJsRg4ijj8BIfj5Eqdduu7ozOuXcgxlLKOMqKPB-JD-ZjeBertBiL55c5uM71DNigvbNhcBX4mgBvBi2gDswbDR3uDXrjGqhcpwnCgcBtTZ3RwXPlkbR_M2DTHCxFJeH5t-6vRI8AANvWhsZ7iadiWKFlmv3kRMy3m-_1Ljr1lvoLNWrPLWpSiVQLKVWcFFmilnEh8yT9p_z5Z1n5m09fDiBgtA</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Rigorous analysis of the axial acoustic radiation force on a spherical object for single-beam acoustic tweezing applications</title><source>Lirias (KU Leuven Association)</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><source>AIP Acoustical Society of America</source><creator>Weekers, Bart P ; Rottenberg, Xavier ; Lagae, Liesbet ; Rochus, Veronique</creator><creatorcontrib>Weekers, Bart P ; Rottenberg, Xavier ; Lagae, Liesbet ; Rochus, Veronique</creatorcontrib><description>Acoustic tweezers are increasingly utilized for the contactless manipulation of small particles. This paper provides a theoretical model demonstrating the acoustic manipulation capabilities of single-beam acoustic transducers. Analytical formulas are derived for the acoustic radiation force on an isotropic spherical object of arbitrary size, centered on a circular piston, simply supported and clamped radiator in an inviscid fluid. Using these results, the existence of a negative axial force pulling the object closer to the radiator is revealed and explored. These findings offer further insight into the feasibility of trapping objects in the near-field of a single-beam acoustic transducer. The calculations illustrate the trapping capabilities of the different emitters as a function of radiator size, particle size, and distance from the source and highlight the impact of radiator boundary conditions. Manipulation of a cell-like fluid sphere in water and an expanded polystyrene sphere in air are studied in more detail with results that are validated through finite element analysis. The developed theoretical model allows fast evaluation of acoustic radiation forces which could aid in the development of relatively simple and inexpensive contactless manipulation solutions.</description><identifier>ISSN: 0001-4966</identifier><language>eng</language><publisher>ACOUSTICAL SOC AMER AMER INST PHYSICS</publisher><ispartof>JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2022-06, Vol.151 (6), p.3615-3625</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27839</link.rule.ids></links><search><creatorcontrib>Weekers, Bart P</creatorcontrib><creatorcontrib>Rottenberg, Xavier</creatorcontrib><creatorcontrib>Lagae, Liesbet</creatorcontrib><creatorcontrib>Rochus, Veronique</creatorcontrib><title>Rigorous analysis of the axial acoustic radiation force on a spherical object for single-beam acoustic tweezing applications</title><title>JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA</title><description>Acoustic tweezers are increasingly utilized for the contactless manipulation of small particles. This paper provides a theoretical model demonstrating the acoustic manipulation capabilities of single-beam acoustic transducers. Analytical formulas are derived for the acoustic radiation force on an isotropic spherical object of arbitrary size, centered on a circular piston, simply supported and clamped radiator in an inviscid fluid. Using these results, the existence of a negative axial force pulling the object closer to the radiator is revealed and explored. These findings offer further insight into the feasibility of trapping objects in the near-field of a single-beam acoustic transducer. The calculations illustrate the trapping capabilities of the different emitters as a function of radiator size, particle size, and distance from the source and highlight the impact of radiator boundary conditions. Manipulation of a cell-like fluid sphere in water and an expanded polystyrene sphere in air are studied in more detail with results that are validated through finite element analysis. The developed theoretical model allows fast evaluation of acoustic radiation forces which could aid in the development of relatively simple and inexpensive contactless manipulation solutions.</description><issn>0001-4966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVjMtuwjAQRb0ACQr8w6yRUjkPAlkjEOuqe2tiJsRg4ijj8BIfj5Eqdduu7ozOuXcgxlLKOMqKPB-JD-ZjeBertBiL55c5uM71DNigvbNhcBX4mgBvBi2gDswbDR3uDXrjGqhcpwnCgcBtTZ3RwXPlkbR_M2DTHCxFJeH5t-6vRI8AANvWhsZ7iadiWKFlmv3kRMy3m-_1Ljr1lvoLNWrPLWpSiVQLKVWcFFmilnEh8yT9p_z5Z1n5m09fDiBgtA</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Weekers, Bart P</creator><creator>Rottenberg, Xavier</creator><creator>Lagae, Liesbet</creator><creator>Rochus, Veronique</creator><general>ACOUSTICAL SOC AMER AMER INST PHYSICS</general><scope>FZOIL</scope></search><sort><creationdate>202206</creationdate><title>Rigorous analysis of the axial acoustic radiation force on a spherical object for single-beam acoustic tweezing applications</title><author>Weekers, Bart P ; Rottenberg, Xavier ; Lagae, Liesbet ; Rochus, Veronique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_20_500_12942_7190623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weekers, Bart P</creatorcontrib><creatorcontrib>Rottenberg, Xavier</creatorcontrib><creatorcontrib>Lagae, Liesbet</creatorcontrib><creatorcontrib>Rochus, Veronique</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weekers, Bart P</au><au>Rottenberg, Xavier</au><au>Lagae, Liesbet</au><au>Rochus, Veronique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rigorous analysis of the axial acoustic radiation force on a spherical object for single-beam acoustic tweezing applications</atitle><jtitle>JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA</jtitle><date>2022-06</date><risdate>2022</risdate><volume>151</volume><issue>6</issue><spage>3615</spage><epage>3625</epage><pages>3615-3625</pages><issn>0001-4966</issn><abstract>Acoustic tweezers are increasingly utilized for the contactless manipulation of small particles. This paper provides a theoretical model demonstrating the acoustic manipulation capabilities of single-beam acoustic transducers. Analytical formulas are derived for the acoustic radiation force on an isotropic spherical object of arbitrary size, centered on a circular piston, simply supported and clamped radiator in an inviscid fluid. Using these results, the existence of a negative axial force pulling the object closer to the radiator is revealed and explored. These findings offer further insight into the feasibility of trapping objects in the near-field of a single-beam acoustic transducer. The calculations illustrate the trapping capabilities of the different emitters as a function of radiator size, particle size, and distance from the source and highlight the impact of radiator boundary conditions. Manipulation of a cell-like fluid sphere in water and an expanded polystyrene sphere in air are studied in more detail with results that are validated through finite element analysis. The developed theoretical model allows fast evaluation of acoustic radiation forces which could aid in the development of relatively simple and inexpensive contactless manipulation solutions.</abstract><pub>ACOUSTICAL SOC AMER AMER INST PHYSICS</pub></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2022-06, Vol.151 (6), p.3615-3625
issn 0001-4966
language eng
recordid cdi_kuleuven_dspace_20_500_12942_719062
source Lirias (KU Leuven Association); AIP Journals Complete; Alma/SFX Local Collection; AIP Acoustical Society of America
title Rigorous analysis of the axial acoustic radiation force on a spherical object for single-beam acoustic tweezing applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A35%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rigorous%20analysis%20of%20the%20axial%20acoustic%20radiation%20force%20on%20a%20spherical%20object%20for%20single-beam%20acoustic%20tweezing%20applications&rft.jtitle=JOURNAL%20OF%20THE%20ACOUSTICAL%20SOCIETY%20OF%20AMERICA&rft.au=Weekers,%20Bart%20P&rft.date=2022-06&rft.volume=151&rft.issue=6&rft.spage=3615&rft.epage=3625&rft.pages=3615-3625&rft.issn=0001-4966&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E20_500_12942_719062%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true