Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data

Multi-coil electromagnetic induction (EMI) systems induce magnetic fields below and above the subsurface. The resulting magnetic field is measured at multiple coils increasingly separated from the transmitter in a rigid boom. This field relates to the subsurface apparent electrical conductivity (σa)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SENSORS 2019-11, Vol.19 (21)
Hauptverfasser: von Hebel, Christian, van der Kruk, Jan, Huisman, Johan A, Mester, Achim, Altdorff, Daniel, Endres, Anthony L, Zimmermann, Egon, Garre, Sarah, Vereecken, Harry
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title SENSORS
container_volume 19
creator von Hebel, Christian
van der Kruk, Jan
Huisman, Johan A
Mester, Achim
Altdorff, Daniel
Endres, Anthony L
Zimmermann, Egon
Garre, Sarah
Vereecken, Harry
description Multi-coil electromagnetic induction (EMI) systems induce magnetic fields below and above the subsurface. The resulting magnetic field is measured at multiple coils increasingly separated from the transmitter in a rigid boom. This field relates to the subsurface apparent electrical conductivity (σa), and σa represents an average value for the depth range investigated with a specific coil separation and orientation. Multi-coil EMI data can be inverted to obtain layered bulk electrical conductivity models. However, above-ground stationary influences alter the signal and the inversion results can be unreliable. This study proposes an improved data processing chain, including EMI data calibration, conversion, and inversion. For the calibration of σa, three direct current resistivity techniques are compared: Electrical resistivity tomography with Dipole-Dipole and Schlumberger electrode arrays and vertical electrical soundings. All three methods obtained robust calibration results. The Dipole-Dipole-based calibration proved stable upon testing on different soil types. To further improve accuracy, we propose a non-linear exact EMI conversion to convert the magnetic field to σa. The complete processing workflow provides accurate and quantitative EMI data and the inversions reliable estimates of the intrinsic electrical conductivities. This improves the ability to combine EMI with, e.g., remote sensing, and the use of EMI for monitoring purposes.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_20_500_12942_711641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20_500_12942_711641</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_20_500_12942_7116413</originalsourceid><addsrcrecordid>eNqVjU1PAjEURRsjiSj-h66JQ_oxCG4dIZLIQsK-ecy8IcXSkunrCP8eNJi4hNU9yT0394Z1Za7ybKyUuP3Hd-w-xo0QSms97rLvApxdNUA2-CdeBN9iE38ZfMU_E3iydGpb5PPkyGYfcMCGz_48HupzUQTr-MKubZW9hrDlE4clNWELa49ky9OkSuXPDX8Dgh7r1OAiPp7zgfWnk2Xxnn0lh6lFb6q4gxKNEmYohJHqJVdmJOVzLvWV8uBi2dCe9BE6P194</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data</title><source>Lirias (KU Leuven Association)</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>von Hebel, Christian ; van der Kruk, Jan ; Huisman, Johan A ; Mester, Achim ; Altdorff, Daniel ; Endres, Anthony L ; Zimmermann, Egon ; Garre, Sarah ; Vereecken, Harry</creator><creatorcontrib>von Hebel, Christian ; van der Kruk, Jan ; Huisman, Johan A ; Mester, Achim ; Altdorff, Daniel ; Endres, Anthony L ; Zimmermann, Egon ; Garre, Sarah ; Vereecken, Harry</creatorcontrib><description>Multi-coil electromagnetic induction (EMI) systems induce magnetic fields below and above the subsurface. The resulting magnetic field is measured at multiple coils increasingly separated from the transmitter in a rigid boom. This field relates to the subsurface apparent electrical conductivity (σa), and σa represents an average value for the depth range investigated with a specific coil separation and orientation. Multi-coil EMI data can be inverted to obtain layered bulk electrical conductivity models. However, above-ground stationary influences alter the signal and the inversion results can be unreliable. This study proposes an improved data processing chain, including EMI data calibration, conversion, and inversion. For the calibration of σa, three direct current resistivity techniques are compared: Electrical resistivity tomography with Dipole-Dipole and Schlumberger electrode arrays and vertical electrical soundings. All three methods obtained robust calibration results. The Dipole-Dipole-based calibration proved stable upon testing on different soil types. To further improve accuracy, we propose a non-linear exact EMI conversion to convert the magnetic field to σa. The complete processing workflow provides accurate and quantitative EMI data and the inversions reliable estimates of the intrinsic electrical conductivities. This improves the ability to combine EMI with, e.g., remote sensing, and the use of EMI for monitoring purposes.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><language>eng</language><publisher>MDPI</publisher><ispartof>SENSORS, 2019-11, Vol.19 (21)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27839</link.rule.ids></links><search><creatorcontrib>von Hebel, Christian</creatorcontrib><creatorcontrib>van der Kruk, Jan</creatorcontrib><creatorcontrib>Huisman, Johan A</creatorcontrib><creatorcontrib>Mester, Achim</creatorcontrib><creatorcontrib>Altdorff, Daniel</creatorcontrib><creatorcontrib>Endres, Anthony L</creatorcontrib><creatorcontrib>Zimmermann, Egon</creatorcontrib><creatorcontrib>Garre, Sarah</creatorcontrib><creatorcontrib>Vereecken, Harry</creatorcontrib><title>Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data</title><title>SENSORS</title><description>Multi-coil electromagnetic induction (EMI) systems induce magnetic fields below and above the subsurface. The resulting magnetic field is measured at multiple coils increasingly separated from the transmitter in a rigid boom. This field relates to the subsurface apparent electrical conductivity (σa), and σa represents an average value for the depth range investigated with a specific coil separation and orientation. Multi-coil EMI data can be inverted to obtain layered bulk electrical conductivity models. However, above-ground stationary influences alter the signal and the inversion results can be unreliable. This study proposes an improved data processing chain, including EMI data calibration, conversion, and inversion. For the calibration of σa, three direct current resistivity techniques are compared: Electrical resistivity tomography with Dipole-Dipole and Schlumberger electrode arrays and vertical electrical soundings. All three methods obtained robust calibration results. The Dipole-Dipole-based calibration proved stable upon testing on different soil types. To further improve accuracy, we propose a non-linear exact EMI conversion to convert the magnetic field to σa. The complete processing workflow provides accurate and quantitative EMI data and the inversions reliable estimates of the intrinsic electrical conductivities. This improves the ability to combine EMI with, e.g., remote sensing, and the use of EMI for monitoring purposes.</description><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVjU1PAjEURRsjiSj-h66JQ_oxCG4dIZLIQsK-ecy8IcXSkunrCP8eNJi4hNU9yT0394Z1Za7ybKyUuP3Hd-w-xo0QSms97rLvApxdNUA2-CdeBN9iE38ZfMU_E3iydGpb5PPkyGYfcMCGz_48HupzUQTr-MKubZW9hrDlE4clNWELa49ky9OkSuXPDX8Dgh7r1OAiPp7zgfWnk2Xxnn0lh6lFb6q4gxKNEmYohJHqJVdmJOVzLvWV8uBi2dCe9BE6P194</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>von Hebel, Christian</creator><creator>van der Kruk, Jan</creator><creator>Huisman, Johan A</creator><creator>Mester, Achim</creator><creator>Altdorff, Daniel</creator><creator>Endres, Anthony L</creator><creator>Zimmermann, Egon</creator><creator>Garre, Sarah</creator><creator>Vereecken, Harry</creator><general>MDPI</general><scope>FZOIL</scope></search><sort><creationdate>201911</creationdate><title>Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data</title><author>von Hebel, Christian ; van der Kruk, Jan ; Huisman, Johan A ; Mester, Achim ; Altdorff, Daniel ; Endres, Anthony L ; Zimmermann, Egon ; Garre, Sarah ; Vereecken, Harry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_20_500_12942_7116413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>von Hebel, Christian</creatorcontrib><creatorcontrib>van der Kruk, Jan</creatorcontrib><creatorcontrib>Huisman, Johan A</creatorcontrib><creatorcontrib>Mester, Achim</creatorcontrib><creatorcontrib>Altdorff, Daniel</creatorcontrib><creatorcontrib>Endres, Anthony L</creatorcontrib><creatorcontrib>Zimmermann, Egon</creatorcontrib><creatorcontrib>Garre, Sarah</creatorcontrib><creatorcontrib>Vereecken, Harry</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>SENSORS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>von Hebel, Christian</au><au>van der Kruk, Jan</au><au>Huisman, Johan A</au><au>Mester, Achim</au><au>Altdorff, Daniel</au><au>Endres, Anthony L</au><au>Zimmermann, Egon</au><au>Garre, Sarah</au><au>Vereecken, Harry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data</atitle><jtitle>SENSORS</jtitle><date>2019-11</date><risdate>2019</risdate><volume>19</volume><issue>21</issue><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Multi-coil electromagnetic induction (EMI) systems induce magnetic fields below and above the subsurface. The resulting magnetic field is measured at multiple coils increasingly separated from the transmitter in a rigid boom. This field relates to the subsurface apparent electrical conductivity (σa), and σa represents an average value for the depth range investigated with a specific coil separation and orientation. Multi-coil EMI data can be inverted to obtain layered bulk electrical conductivity models. However, above-ground stationary influences alter the signal and the inversion results can be unreliable. This study proposes an improved data processing chain, including EMI data calibration, conversion, and inversion. For the calibration of σa, three direct current resistivity techniques are compared: Electrical resistivity tomography with Dipole-Dipole and Schlumberger electrode arrays and vertical electrical soundings. All three methods obtained robust calibration results. The Dipole-Dipole-based calibration proved stable upon testing on different soil types. To further improve accuracy, we propose a non-linear exact EMI conversion to convert the magnetic field to σa. The complete processing workflow provides accurate and quantitative EMI data and the inversions reliable estimates of the intrinsic electrical conductivities. This improves the ability to combine EMI with, e.g., remote sensing, and the use of EMI for monitoring purposes.</abstract><pub>MDPI</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof SENSORS, 2019-11, Vol.19 (21)
issn 1424-8220
1424-8220
language eng
recordid cdi_kuleuven_dspace_20_500_12942_711641
source Lirias (KU Leuven Association); MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
title Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibration,%20Conversion,%20and%20Quantitative%20Multi-Layer%20Inversion%20of%20Multi-Coil%20Rigid-Boom%20Electromagnetic%20Induction%20Data&rft.jtitle=SENSORS&rft.au=von%20Hebel,%20Christian&rft.date=2019-11&rft.volume=19&rft.issue=21&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E20_500_12942_711641%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true