Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data
Multi-coil electromagnetic induction (EMI) systems induce magnetic fields below and above the subsurface. The resulting magnetic field is measured at multiple coils increasingly separated from the transmitter in a rigid boom. This field relates to the subsurface apparent electrical conductivity (σa)...
Gespeichert in:
Veröffentlicht in: | SENSORS 2019-11, Vol.19 (21) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | SENSORS |
container_volume | 19 |
creator | von Hebel, Christian van der Kruk, Jan Huisman, Johan A Mester, Achim Altdorff, Daniel Endres, Anthony L Zimmermann, Egon Garre, Sarah Vereecken, Harry |
description | Multi-coil electromagnetic induction (EMI) systems induce magnetic fields below and above the subsurface. The resulting magnetic field is measured at multiple coils increasingly separated from the transmitter in a rigid boom. This field relates to the subsurface apparent electrical conductivity (σa), and σa represents an average value for the depth range investigated with a specific coil separation and orientation. Multi-coil EMI data can be inverted to obtain layered bulk electrical conductivity models. However, above-ground stationary influences alter the signal and the inversion results can be unreliable. This study proposes an improved data processing chain, including EMI data calibration, conversion, and inversion. For the calibration of σa, three direct current resistivity techniques are compared: Electrical resistivity tomography with Dipole-Dipole and Schlumberger electrode arrays and vertical electrical soundings. All three methods obtained robust calibration results. The Dipole-Dipole-based calibration proved stable upon testing on different soil types. To further improve accuracy, we propose a non-linear exact EMI conversion to convert the magnetic field to σa. The complete processing workflow provides accurate and quantitative EMI data and the inversions reliable estimates of the intrinsic electrical conductivities. This improves the ability to combine EMI with, e.g., remote sensing, and the use of EMI for monitoring purposes. |
format | Article |
fullrecord | <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_20_500_12942_711641</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20_500_12942_711641</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_20_500_12942_7116413</originalsourceid><addsrcrecordid>eNqVjU1PAjEURRsjiSj-h66JQ_oxCG4dIZLIQsK-ecy8IcXSkunrCP8eNJi4hNU9yT0394Z1Za7ybKyUuP3Hd-w-xo0QSms97rLvApxdNUA2-CdeBN9iE38ZfMU_E3iydGpb5PPkyGYfcMCGz_48HupzUQTr-MKubZW9hrDlE4clNWELa49ky9OkSuXPDX8Dgh7r1OAiPp7zgfWnk2Xxnn0lh6lFb6q4gxKNEmYohJHqJVdmJOVzLvWV8uBi2dCe9BE6P194</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data</title><source>Lirias (KU Leuven Association)</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>von Hebel, Christian ; van der Kruk, Jan ; Huisman, Johan A ; Mester, Achim ; Altdorff, Daniel ; Endres, Anthony L ; Zimmermann, Egon ; Garre, Sarah ; Vereecken, Harry</creator><creatorcontrib>von Hebel, Christian ; van der Kruk, Jan ; Huisman, Johan A ; Mester, Achim ; Altdorff, Daniel ; Endres, Anthony L ; Zimmermann, Egon ; Garre, Sarah ; Vereecken, Harry</creatorcontrib><description>Multi-coil electromagnetic induction (EMI) systems induce magnetic fields below and above the subsurface. The resulting magnetic field is measured at multiple coils increasingly separated from the transmitter in a rigid boom. This field relates to the subsurface apparent electrical conductivity (σa), and σa represents an average value for the depth range investigated with a specific coil separation and orientation. Multi-coil EMI data can be inverted to obtain layered bulk electrical conductivity models. However, above-ground stationary influences alter the signal and the inversion results can be unreliable. This study proposes an improved data processing chain, including EMI data calibration, conversion, and inversion. For the calibration of σa, three direct current resistivity techniques are compared: Electrical resistivity tomography with Dipole-Dipole and Schlumberger electrode arrays and vertical electrical soundings. All three methods obtained robust calibration results. The Dipole-Dipole-based calibration proved stable upon testing on different soil types. To further improve accuracy, we propose a non-linear exact EMI conversion to convert the magnetic field to σa. The complete processing workflow provides accurate and quantitative EMI data and the inversions reliable estimates of the intrinsic electrical conductivities. This improves the ability to combine EMI with, e.g., remote sensing, and the use of EMI for monitoring purposes.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><language>eng</language><publisher>MDPI</publisher><ispartof>SENSORS, 2019-11, Vol.19 (21)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27839</link.rule.ids></links><search><creatorcontrib>von Hebel, Christian</creatorcontrib><creatorcontrib>van der Kruk, Jan</creatorcontrib><creatorcontrib>Huisman, Johan A</creatorcontrib><creatorcontrib>Mester, Achim</creatorcontrib><creatorcontrib>Altdorff, Daniel</creatorcontrib><creatorcontrib>Endres, Anthony L</creatorcontrib><creatorcontrib>Zimmermann, Egon</creatorcontrib><creatorcontrib>Garre, Sarah</creatorcontrib><creatorcontrib>Vereecken, Harry</creatorcontrib><title>Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data</title><title>SENSORS</title><description>Multi-coil electromagnetic induction (EMI) systems induce magnetic fields below and above the subsurface. The resulting magnetic field is measured at multiple coils increasingly separated from the transmitter in a rigid boom. This field relates to the subsurface apparent electrical conductivity (σa), and σa represents an average value for the depth range investigated with a specific coil separation and orientation. Multi-coil EMI data can be inverted to obtain layered bulk electrical conductivity models. However, above-ground stationary influences alter the signal and the inversion results can be unreliable. This study proposes an improved data processing chain, including EMI data calibration, conversion, and inversion. For the calibration of σa, three direct current resistivity techniques are compared: Electrical resistivity tomography with Dipole-Dipole and Schlumberger electrode arrays and vertical electrical soundings. All three methods obtained robust calibration results. The Dipole-Dipole-based calibration proved stable upon testing on different soil types. To further improve accuracy, we propose a non-linear exact EMI conversion to convert the magnetic field to σa. The complete processing workflow provides accurate and quantitative EMI data and the inversions reliable estimates of the intrinsic electrical conductivities. This improves the ability to combine EMI with, e.g., remote sensing, and the use of EMI for monitoring purposes.</description><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVjU1PAjEURRsjiSj-h66JQ_oxCG4dIZLIQsK-ecy8IcXSkunrCP8eNJi4hNU9yT0394Z1Za7ybKyUuP3Hd-w-xo0QSms97rLvApxdNUA2-CdeBN9iE38ZfMU_E3iydGpb5PPkyGYfcMCGz_48HupzUQTr-MKubZW9hrDlE4clNWELa49ky9OkSuXPDX8Dgh7r1OAiPp7zgfWnk2Xxnn0lh6lFb6q4gxKNEmYohJHqJVdmJOVzLvWV8uBi2dCe9BE6P194</recordid><startdate>201911</startdate><enddate>201911</enddate><creator>von Hebel, Christian</creator><creator>van der Kruk, Jan</creator><creator>Huisman, Johan A</creator><creator>Mester, Achim</creator><creator>Altdorff, Daniel</creator><creator>Endres, Anthony L</creator><creator>Zimmermann, Egon</creator><creator>Garre, Sarah</creator><creator>Vereecken, Harry</creator><general>MDPI</general><scope>FZOIL</scope></search><sort><creationdate>201911</creationdate><title>Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data</title><author>von Hebel, Christian ; van der Kruk, Jan ; Huisman, Johan A ; Mester, Achim ; Altdorff, Daniel ; Endres, Anthony L ; Zimmermann, Egon ; Garre, Sarah ; Vereecken, Harry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_20_500_12942_7116413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>von Hebel, Christian</creatorcontrib><creatorcontrib>van der Kruk, Jan</creatorcontrib><creatorcontrib>Huisman, Johan A</creatorcontrib><creatorcontrib>Mester, Achim</creatorcontrib><creatorcontrib>Altdorff, Daniel</creatorcontrib><creatorcontrib>Endres, Anthony L</creatorcontrib><creatorcontrib>Zimmermann, Egon</creatorcontrib><creatorcontrib>Garre, Sarah</creatorcontrib><creatorcontrib>Vereecken, Harry</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>SENSORS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>von Hebel, Christian</au><au>van der Kruk, Jan</au><au>Huisman, Johan A</au><au>Mester, Achim</au><au>Altdorff, Daniel</au><au>Endres, Anthony L</au><au>Zimmermann, Egon</au><au>Garre, Sarah</au><au>Vereecken, Harry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data</atitle><jtitle>SENSORS</jtitle><date>2019-11</date><risdate>2019</risdate><volume>19</volume><issue>21</issue><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Multi-coil electromagnetic induction (EMI) systems induce magnetic fields below and above the subsurface. The resulting magnetic field is measured at multiple coils increasingly separated from the transmitter in a rigid boom. This field relates to the subsurface apparent electrical conductivity (σa), and σa represents an average value for the depth range investigated with a specific coil separation and orientation. Multi-coil EMI data can be inverted to obtain layered bulk electrical conductivity models. However, above-ground stationary influences alter the signal and the inversion results can be unreliable. This study proposes an improved data processing chain, including EMI data calibration, conversion, and inversion. For the calibration of σa, three direct current resistivity techniques are compared: Electrical resistivity tomography with Dipole-Dipole and Schlumberger electrode arrays and vertical electrical soundings. All three methods obtained robust calibration results. The Dipole-Dipole-based calibration proved stable upon testing on different soil types. To further improve accuracy, we propose a non-linear exact EMI conversion to convert the magnetic field to σa. The complete processing workflow provides accurate and quantitative EMI data and the inversions reliable estimates of the intrinsic electrical conductivities. This improves the ability to combine EMI with, e.g., remote sensing, and the use of EMI for monitoring purposes.</abstract><pub>MDPI</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | SENSORS, 2019-11, Vol.19 (21) |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_kuleuven_dspace_20_500_12942_711641 |
source | Lirias (KU Leuven Association); MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
title | Calibration, Conversion, and Quantitative Multi-Layer Inversion of Multi-Coil Rigid-Boom Electromagnetic Induction Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T09%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calibration,%20Conversion,%20and%20Quantitative%20Multi-Layer%20Inversion%20of%20Multi-Coil%20Rigid-Boom%20Electromagnetic%20Induction%20Data&rft.jtitle=SENSORS&rft.au=von%20Hebel,%20Christian&rft.date=2019-11&rft.volume=19&rft.issue=21&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E20_500_12942_711641%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |