A cryogenic inertial sensor for terrestrial and lunar gravitational-wave detection
Future gravitational-wave detectors on Earth and on the Moon aim to access signals below 10Hz. On Earth, the Einstein Telescope - a next generation interferometric gravitational-wave detector - will extend the detection band down to 3 Hz. On the Moon, the Lunar Gravitational-wave Antenna will featur...
Gespeichert in:
Veröffentlicht in: | Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment 2022-10, Vol.1041 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment |
container_volume | 1041 |
creator | van Heijningen, Joris Gatti, Alberto Ferreira, Elvis Camilo Bocchese, Florian Lucas, Stéphane Perali, Andrea Tavernier, Filip |
description | Future gravitational-wave detectors on Earth and on the Moon aim to access signals below 10Hz. On Earth, the Einstein Telescope - a next generation interferometric gravitational-wave detector - will extend the detection band down to 3 Hz. On the Moon, the Lunar Gravitational-wave Antenna will feature extremely sensitive accelerometers that can monitor the Moon's body excited by gravitational waves from the lunar surface. Our cryogenic superconducting inertial sensor aims to meet requirements for deployment on the Moon and provide sensitive probes of suspended cryogenic objects in terrestrial gravitational-wave detectors. We aim for a displacement sensitivity at 1Hz of a few fm/√Hz, which is 3 orders of magnitude better than the state of the art. |
format | Article |
fullrecord | <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_20_500_12942_706853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20_500_12942_706853</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_20_500_12942_7068533</originalsourceid><addsrcrecordid>eNqVissKwjAQRbNQsD7-IWuhElP7WooorsV9GNJpiYZUJmnVv7cFP0AvHC4czoRFYpsVcSmEnLG59zcxrMyLiF32XNO7bdAZzY1DCgYs9-h8S7weCEiEPtCowVXcdg6INwS9CRBM68DGT-iRVxhQj2LJpjVYj6vvL9j6dLwezvG9s9j16FTlH6BRSaFSIdRWljupcpEVaZL8GW9-jlV4heQDdTFROg</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A cryogenic inertial sensor for terrestrial and lunar gravitational-wave detection</title><source>Lirias (KU Leuven Association)</source><source>Elsevier ScienceDirect Journals Complete</source><creator>van Heijningen, Joris ; Gatti, Alberto ; Ferreira, Elvis Camilo ; Bocchese, Florian ; Lucas, Stéphane ; Perali, Andrea ; Tavernier, Filip</creator><creatorcontrib>van Heijningen, Joris ; Gatti, Alberto ; Ferreira, Elvis Camilo ; Bocchese, Florian ; Lucas, Stéphane ; Perali, Andrea ; Tavernier, Filip</creatorcontrib><description>Future gravitational-wave detectors on Earth and on the Moon aim to access signals below 10Hz. On Earth, the Einstein Telescope - a next generation interferometric gravitational-wave detector - will extend the detection band down to 3 Hz. On the Moon, the Lunar Gravitational-wave Antenna will feature extremely sensitive accelerometers that can monitor the Moon's body excited by gravitational waves from the lunar surface. Our cryogenic superconducting inertial sensor aims to meet requirements for deployment on the Moon and provide sensitive probes of suspended cryogenic objects in terrestrial gravitational-wave detectors. We aim for a displacement sensitivity at 1Hz of a few fm/√Hz, which is 3 orders of magnitude better than the state of the art.</description><identifier>ISSN: 0168-9002</identifier><language>eng</language><publisher>Elsevier</publisher><ispartof>Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment, 2022-10, Vol.1041</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,27858</link.rule.ids></links><search><creatorcontrib>van Heijningen, Joris</creatorcontrib><creatorcontrib>Gatti, Alberto</creatorcontrib><creatorcontrib>Ferreira, Elvis Camilo</creatorcontrib><creatorcontrib>Bocchese, Florian</creatorcontrib><creatorcontrib>Lucas, Stéphane</creatorcontrib><creatorcontrib>Perali, Andrea</creatorcontrib><creatorcontrib>Tavernier, Filip</creatorcontrib><title>A cryogenic inertial sensor for terrestrial and lunar gravitational-wave detection</title><title>Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment</title><description>Future gravitational-wave detectors on Earth and on the Moon aim to access signals below 10Hz. On Earth, the Einstein Telescope - a next generation interferometric gravitational-wave detector - will extend the detection band down to 3 Hz. On the Moon, the Lunar Gravitational-wave Antenna will feature extremely sensitive accelerometers that can monitor the Moon's body excited by gravitational waves from the lunar surface. Our cryogenic superconducting inertial sensor aims to meet requirements for deployment on the Moon and provide sensitive probes of suspended cryogenic objects in terrestrial gravitational-wave detectors. We aim for a displacement sensitivity at 1Hz of a few fm/√Hz, which is 3 orders of magnitude better than the state of the art.</description><issn>0168-9002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVissKwjAQRbNQsD7-IWuhElP7WooorsV9GNJpiYZUJmnVv7cFP0AvHC4czoRFYpsVcSmEnLG59zcxrMyLiF32XNO7bdAZzY1DCgYs9-h8S7weCEiEPtCowVXcdg6INwS9CRBM68DGT-iRVxhQj2LJpjVYj6vvL9j6dLwezvG9s9j16FTlH6BRSaFSIdRWljupcpEVaZL8GW9-jlV4heQDdTFROg</recordid><startdate>20221011</startdate><enddate>20221011</enddate><creator>van Heijningen, Joris</creator><creator>Gatti, Alberto</creator><creator>Ferreira, Elvis Camilo</creator><creator>Bocchese, Florian</creator><creator>Lucas, Stéphane</creator><creator>Perali, Andrea</creator><creator>Tavernier, Filip</creator><general>Elsevier</general><scope>FZOIL</scope></search><sort><creationdate>20221011</creationdate><title>A cryogenic inertial sensor for terrestrial and lunar gravitational-wave detection</title><author>van Heijningen, Joris ; Gatti, Alberto ; Ferreira, Elvis Camilo ; Bocchese, Florian ; Lucas, Stéphane ; Perali, Andrea ; Tavernier, Filip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_20_500_12942_7068533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Heijningen, Joris</creatorcontrib><creatorcontrib>Gatti, Alberto</creatorcontrib><creatorcontrib>Ferreira, Elvis Camilo</creatorcontrib><creatorcontrib>Bocchese, Florian</creatorcontrib><creatorcontrib>Lucas, Stéphane</creatorcontrib><creatorcontrib>Perali, Andrea</creatorcontrib><creatorcontrib>Tavernier, Filip</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Heijningen, Joris</au><au>Gatti, Alberto</au><au>Ferreira, Elvis Camilo</au><au>Bocchese, Florian</au><au>Lucas, Stéphane</au><au>Perali, Andrea</au><au>Tavernier, Filip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cryogenic inertial sensor for terrestrial and lunar gravitational-wave detection</atitle><jtitle>Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment</jtitle><date>2022-10-11</date><risdate>2022</risdate><volume>1041</volume><issn>0168-9002</issn><abstract>Future gravitational-wave detectors on Earth and on the Moon aim to access signals below 10Hz. On Earth, the Einstein Telescope - a next generation interferometric gravitational-wave detector - will extend the detection band down to 3 Hz. On the Moon, the Lunar Gravitational-wave Antenna will feature extremely sensitive accelerometers that can monitor the Moon's body excited by gravitational waves from the lunar surface. Our cryogenic superconducting inertial sensor aims to meet requirements for deployment on the Moon and provide sensitive probes of suspended cryogenic objects in terrestrial gravitational-wave detectors. We aim for a displacement sensitivity at 1Hz of a few fm/√Hz, which is 3 orders of magnitude better than the state of the art.</abstract><pub>Elsevier</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9002 |
ispartof | Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment, 2022-10, Vol.1041 |
issn | 0168-9002 |
language | eng |
recordid | cdi_kuleuven_dspace_20_500_12942_706853 |
source | Lirias (KU Leuven Association); Elsevier ScienceDirect Journals Complete |
title | A cryogenic inertial sensor for terrestrial and lunar gravitational-wave detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A37%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cryogenic%20inertial%20sensor%20for%20terrestrial%20and%20lunar%20gravitational-wave%20detection&rft.jtitle=Nuclear%20Instruments%20&%20Methods%20In%20Physics%20Research%20Section%20A-Accelerators%20Spectrometers%20Detectors%20And%20Associated%20Equipment&rft.au=van%20Heijningen,%20Joris&rft.date=2022-10-11&rft.volume=1041&rft.issn=0168-9002&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E20_500_12942_706853%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |