A cryogenic inertial sensor for terrestrial and lunar gravitational-wave detection

Future gravitational-wave detectors on Earth and on the Moon aim to access signals below 10Hz. On Earth, the Einstein Telescope - a next generation interferometric gravitational-wave detector - will extend the detection band down to 3 Hz. On the Moon, the Lunar Gravitational-wave Antenna will featur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment 2022-10, Vol.1041
Hauptverfasser: van Heijningen, Joris, Gatti, Alberto, Ferreira, Elvis Camilo, Bocchese, Florian, Lucas, Stéphane, Perali, Andrea, Tavernier, Filip
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment
container_volume 1041
creator van Heijningen, Joris
Gatti, Alberto
Ferreira, Elvis Camilo
Bocchese, Florian
Lucas, Stéphane
Perali, Andrea
Tavernier, Filip
description Future gravitational-wave detectors on Earth and on the Moon aim to access signals below 10Hz. On Earth, the Einstein Telescope - a next generation interferometric gravitational-wave detector - will extend the detection band down to 3 Hz. On the Moon, the Lunar Gravitational-wave Antenna will feature extremely sensitive accelerometers that can monitor the Moon's body excited by gravitational waves from the lunar surface. Our cryogenic superconducting inertial sensor aims to meet requirements for deployment on the Moon and provide sensitive probes of suspended cryogenic objects in terrestrial gravitational-wave detectors. We aim for a displacement sensitivity at 1Hz of a few fm/√Hz, which is 3 orders of magnitude better than the state of the art.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_20_500_12942_706853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20_500_12942_706853</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_20_500_12942_7068533</originalsourceid><addsrcrecordid>eNqVissKwjAQRbNQsD7-IWuhElP7WooorsV9GNJpiYZUJmnVv7cFP0AvHC4czoRFYpsVcSmEnLG59zcxrMyLiF32XNO7bdAZzY1DCgYs9-h8S7weCEiEPtCowVXcdg6INwS9CRBM68DGT-iRVxhQj2LJpjVYj6vvL9j6dLwezvG9s9j16FTlH6BRSaFSIdRWljupcpEVaZL8GW9-jlV4heQDdTFROg</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A cryogenic inertial sensor for terrestrial and lunar gravitational-wave detection</title><source>Lirias (KU Leuven Association)</source><source>Elsevier ScienceDirect Journals Complete</source><creator>van Heijningen, Joris ; Gatti, Alberto ; Ferreira, Elvis Camilo ; Bocchese, Florian ; Lucas, Stéphane ; Perali, Andrea ; Tavernier, Filip</creator><creatorcontrib>van Heijningen, Joris ; Gatti, Alberto ; Ferreira, Elvis Camilo ; Bocchese, Florian ; Lucas, Stéphane ; Perali, Andrea ; Tavernier, Filip</creatorcontrib><description>Future gravitational-wave detectors on Earth and on the Moon aim to access signals below 10Hz. On Earth, the Einstein Telescope - a next generation interferometric gravitational-wave detector - will extend the detection band down to 3 Hz. On the Moon, the Lunar Gravitational-wave Antenna will feature extremely sensitive accelerometers that can monitor the Moon's body excited by gravitational waves from the lunar surface. Our cryogenic superconducting inertial sensor aims to meet requirements for deployment on the Moon and provide sensitive probes of suspended cryogenic objects in terrestrial gravitational-wave detectors. We aim for a displacement sensitivity at 1Hz of a few fm/√Hz, which is 3 orders of magnitude better than the state of the art.</description><identifier>ISSN: 0168-9002</identifier><language>eng</language><publisher>Elsevier</publisher><ispartof>Nuclear Instruments &amp; Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment, 2022-10, Vol.1041</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,27858</link.rule.ids></links><search><creatorcontrib>van Heijningen, Joris</creatorcontrib><creatorcontrib>Gatti, Alberto</creatorcontrib><creatorcontrib>Ferreira, Elvis Camilo</creatorcontrib><creatorcontrib>Bocchese, Florian</creatorcontrib><creatorcontrib>Lucas, Stéphane</creatorcontrib><creatorcontrib>Perali, Andrea</creatorcontrib><creatorcontrib>Tavernier, Filip</creatorcontrib><title>A cryogenic inertial sensor for terrestrial and lunar gravitational-wave detection</title><title>Nuclear Instruments &amp; Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment</title><description>Future gravitational-wave detectors on Earth and on the Moon aim to access signals below 10Hz. On Earth, the Einstein Telescope - a next generation interferometric gravitational-wave detector - will extend the detection band down to 3 Hz. On the Moon, the Lunar Gravitational-wave Antenna will feature extremely sensitive accelerometers that can monitor the Moon's body excited by gravitational waves from the lunar surface. Our cryogenic superconducting inertial sensor aims to meet requirements for deployment on the Moon and provide sensitive probes of suspended cryogenic objects in terrestrial gravitational-wave detectors. We aim for a displacement sensitivity at 1Hz of a few fm/√Hz, which is 3 orders of magnitude better than the state of the art.</description><issn>0168-9002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVissKwjAQRbNQsD7-IWuhElP7WooorsV9GNJpiYZUJmnVv7cFP0AvHC4czoRFYpsVcSmEnLG59zcxrMyLiF32XNO7bdAZzY1DCgYs9-h8S7weCEiEPtCowVXcdg6INwS9CRBM68DGT-iRVxhQj2LJpjVYj6vvL9j6dLwezvG9s9j16FTlH6BRSaFSIdRWljupcpEVaZL8GW9-jlV4heQDdTFROg</recordid><startdate>20221011</startdate><enddate>20221011</enddate><creator>van Heijningen, Joris</creator><creator>Gatti, Alberto</creator><creator>Ferreira, Elvis Camilo</creator><creator>Bocchese, Florian</creator><creator>Lucas, Stéphane</creator><creator>Perali, Andrea</creator><creator>Tavernier, Filip</creator><general>Elsevier</general><scope>FZOIL</scope></search><sort><creationdate>20221011</creationdate><title>A cryogenic inertial sensor for terrestrial and lunar gravitational-wave detection</title><author>van Heijningen, Joris ; Gatti, Alberto ; Ferreira, Elvis Camilo ; Bocchese, Florian ; Lucas, Stéphane ; Perali, Andrea ; Tavernier, Filip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_20_500_12942_7068533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Heijningen, Joris</creatorcontrib><creatorcontrib>Gatti, Alberto</creatorcontrib><creatorcontrib>Ferreira, Elvis Camilo</creatorcontrib><creatorcontrib>Bocchese, Florian</creatorcontrib><creatorcontrib>Lucas, Stéphane</creatorcontrib><creatorcontrib>Perali, Andrea</creatorcontrib><creatorcontrib>Tavernier, Filip</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Nuclear Instruments &amp; Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Heijningen, Joris</au><au>Gatti, Alberto</au><au>Ferreira, Elvis Camilo</au><au>Bocchese, Florian</au><au>Lucas, Stéphane</au><au>Perali, Andrea</au><au>Tavernier, Filip</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cryogenic inertial sensor for terrestrial and lunar gravitational-wave detection</atitle><jtitle>Nuclear Instruments &amp; Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment</jtitle><date>2022-10-11</date><risdate>2022</risdate><volume>1041</volume><issn>0168-9002</issn><abstract>Future gravitational-wave detectors on Earth and on the Moon aim to access signals below 10Hz. On Earth, the Einstein Telescope - a next generation interferometric gravitational-wave detector - will extend the detection band down to 3 Hz. On the Moon, the Lunar Gravitational-wave Antenna will feature extremely sensitive accelerometers that can monitor the Moon's body excited by gravitational waves from the lunar surface. Our cryogenic superconducting inertial sensor aims to meet requirements for deployment on the Moon and provide sensitive probes of suspended cryogenic objects in terrestrial gravitational-wave detectors. We aim for a displacement sensitivity at 1Hz of a few fm/√Hz, which is 3 orders of magnitude better than the state of the art.</abstract><pub>Elsevier</pub></addata></record>
fulltext fulltext
identifier ISSN: 0168-9002
ispartof Nuclear Instruments & Methods In Physics Research Section A-Accelerators Spectrometers Detectors And Associated Equipment, 2022-10, Vol.1041
issn 0168-9002
language eng
recordid cdi_kuleuven_dspace_20_500_12942_706853
source Lirias (KU Leuven Association); Elsevier ScienceDirect Journals Complete
title A cryogenic inertial sensor for terrestrial and lunar gravitational-wave detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A37%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cryogenic%20inertial%20sensor%20for%20terrestrial%20and%20lunar%20gravitational-wave%20detection&rft.jtitle=Nuclear%20Instruments%20&%20Methods%20In%20Physics%20Research%20Section%20A-Accelerators%20Spectrometers%20Detectors%20And%20Associated%20Equipment&rft.au=van%20Heijningen,%20Joris&rft.date=2022-10-11&rft.volume=1041&rft.issn=0168-9002&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E20_500_12942_706853%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true