Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae
The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based biorefineries. However, engineered C5-strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. H...
Gespeichert in:
Veröffentlicht in: | MICROBIAL BIOTECHNOLOGY 2021-07, Vol.14 (5), p.2101-2115 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2115 |
---|---|
container_issue | 5 |
container_start_page | 2101 |
container_title | MICROBIAL BIOTECHNOLOGY |
container_volume | 14 |
creator | Palermo, Gisele Cristina de Lima Coutoune, Natalia Bueno, Joao Gabriel Ribeiro Maciel, Lucas Ferreira dosSantos, Leandro Vieira |
description | The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based biorefineries. However, engineered C5-strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non-obvious regulatory network connection of both metabolisms using time-course transcriptome analysis. Our results indicated the vacuolar Fe2+ /Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3-fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe-S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways. |
format | Article |
fullrecord | <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_20_500_12942_697587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20_500_12942_697587</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_20_500_12942_6975873</originalsourceid><addsrcrecordid>eNqVyrsKwjAUgOEgCl7fIbOgpK2xdpaKu04uIcajRnMpOWmpby-Kg6NO_z98HTJIcp7M8iLh3a_vkyHijbElYzwdkEPZVsYH7S7UQpSGau_ed_RGo0UaPdW2Cr4B2j6MR6BnCBZclPFFtaM7qdRVBm8fCpAqCNBo1BLGpHeWBmHy6YhMN-V-vZ3dawN1A06csJIKRMoEZ0wkabFIxbLI-SrP_sTzn7GIbcyezGNWjw</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae</title><source>Lirias (KU Leuven Association)</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Palermo, Gisele Cristina de Lima ; Coutoune, Natalia ; Bueno, Joao Gabriel Ribeiro ; Maciel, Lucas Ferreira ; dosSantos, Leandro Vieira</creator><creatorcontrib>Palermo, Gisele Cristina de Lima ; Coutoune, Natalia ; Bueno, Joao Gabriel Ribeiro ; Maciel, Lucas Ferreira ; dosSantos, Leandro Vieira</creatorcontrib><description>The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based biorefineries. However, engineered C5-strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non-obvious regulatory network connection of both metabolisms using time-course transcriptome analysis. Our results indicated the vacuolar Fe2+ /Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3-fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe-S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.</description><identifier>ISSN: 1751-7915</identifier><identifier>EISSN: 1751-7915</identifier><language>eng</language><publisher>WILEY</publisher><ispartof>MICROBIAL BIOTECHNOLOGY, 2021-07, Vol.14 (5), p.2101-2115</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27837</link.rule.ids></links><search><creatorcontrib>Palermo, Gisele Cristina de Lima</creatorcontrib><creatorcontrib>Coutoune, Natalia</creatorcontrib><creatorcontrib>Bueno, Joao Gabriel Ribeiro</creatorcontrib><creatorcontrib>Maciel, Lucas Ferreira</creatorcontrib><creatorcontrib>dosSantos, Leandro Vieira</creatorcontrib><title>Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae</title><title>MICROBIAL BIOTECHNOLOGY</title><description>The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based biorefineries. However, engineered C5-strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non-obvious regulatory network connection of both metabolisms using time-course transcriptome analysis. Our results indicated the vacuolar Fe2+ /Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3-fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe-S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.</description><issn>1751-7915</issn><issn>1751-7915</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVyrsKwjAUgOEgCl7fIbOgpK2xdpaKu04uIcajRnMpOWmpby-Kg6NO_z98HTJIcp7M8iLh3a_vkyHijbElYzwdkEPZVsYH7S7UQpSGau_ed_RGo0UaPdW2Cr4B2j6MR6BnCBZclPFFtaM7qdRVBm8fCpAqCNBo1BLGpHeWBmHy6YhMN-V-vZ3dawN1A06csJIKRMoEZ0wkabFIxbLI-SrP_sTzn7GIbcyezGNWjw</recordid><startdate>20210727</startdate><enddate>20210727</enddate><creator>Palermo, Gisele Cristina de Lima</creator><creator>Coutoune, Natalia</creator><creator>Bueno, Joao Gabriel Ribeiro</creator><creator>Maciel, Lucas Ferreira</creator><creator>dosSantos, Leandro Vieira</creator><general>WILEY</general><scope>FZOIL</scope></search><sort><creationdate>20210727</creationdate><title>Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae</title><author>Palermo, Gisele Cristina de Lima ; Coutoune, Natalia ; Bueno, Joao Gabriel Ribeiro ; Maciel, Lucas Ferreira ; dosSantos, Leandro Vieira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_20_500_12942_6975873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palermo, Gisele Cristina de Lima</creatorcontrib><creatorcontrib>Coutoune, Natalia</creatorcontrib><creatorcontrib>Bueno, Joao Gabriel Ribeiro</creatorcontrib><creatorcontrib>Maciel, Lucas Ferreira</creatorcontrib><creatorcontrib>dosSantos, Leandro Vieira</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>MICROBIAL BIOTECHNOLOGY</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palermo, Gisele Cristina de Lima</au><au>Coutoune, Natalia</au><au>Bueno, Joao Gabriel Ribeiro</au><au>Maciel, Lucas Ferreira</au><au>dosSantos, Leandro Vieira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae</atitle><jtitle>MICROBIAL BIOTECHNOLOGY</jtitle><date>2021-07-27</date><risdate>2021</risdate><volume>14</volume><issue>5</issue><spage>2101</spage><epage>2115</epage><pages>2101-2115</pages><issn>1751-7915</issn><eissn>1751-7915</eissn><abstract>The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based biorefineries. However, engineered C5-strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non-obvious regulatory network connection of both metabolisms using time-course transcriptome analysis. Our results indicated the vacuolar Fe2+ /Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3-fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe-S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.</abstract><pub>WILEY</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-7915 |
ispartof | MICROBIAL BIOTECHNOLOGY, 2021-07, Vol.14 (5), p.2101-2115 |
issn | 1751-7915 1751-7915 |
language | eng |
recordid | cdi_kuleuven_dspace_20_500_12942_697587 |
source | Lirias (KU Leuven Association); Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
title | Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20metal%20ion%20metabolisms%20to%20improve%20xylose%20fermentation%20in%20Saccharomyces%20cerevisiae&rft.jtitle=MICROBIAL%20BIOTECHNOLOGY&rft.au=Palermo,%20Gisele%20Cristina%20de%20Lima&rft.date=2021-07-27&rft.volume=14&rft.issue=5&rft.spage=2101&rft.epage=2115&rft.pages=2101-2115&rft.issn=1751-7915&rft.eissn=1751-7915&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E20_500_12942_697587%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |