Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae

The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based biorefineries. However, engineered C5-strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MICROBIAL BIOTECHNOLOGY 2021-07, Vol.14 (5), p.2101-2115
Hauptverfasser: Palermo, Gisele Cristina de Lima, Coutoune, Natalia, Bueno, Joao Gabriel Ribeiro, Maciel, Lucas Ferreira, dosSantos, Leandro Vieira
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2115
container_issue 5
container_start_page 2101
container_title MICROBIAL BIOTECHNOLOGY
container_volume 14
creator Palermo, Gisele Cristina de Lima
Coutoune, Natalia
Bueno, Joao Gabriel Ribeiro
Maciel, Lucas Ferreira
dosSantos, Leandro Vieira
description The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based biorefineries. However, engineered C5-strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non-obvious regulatory network connection of both metabolisms using time-course transcriptome analysis. Our results indicated the vacuolar Fe2+ /Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3-fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe-S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_20_500_12942_697587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20_500_12942_697587</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_20_500_12942_6975873</originalsourceid><addsrcrecordid>eNqVyrsKwjAUgOEgCl7fIbOgpK2xdpaKu04uIcajRnMpOWmpby-Kg6NO_z98HTJIcp7M8iLh3a_vkyHijbElYzwdkEPZVsYH7S7UQpSGau_ed_RGo0UaPdW2Cr4B2j6MR6BnCBZclPFFtaM7qdRVBm8fCpAqCNBo1BLGpHeWBmHy6YhMN-V-vZ3dawN1A06csJIKRMoEZ0wkabFIxbLI-SrP_sTzn7GIbcyezGNWjw</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae</title><source>Lirias (KU Leuven Association)</source><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Palermo, Gisele Cristina de Lima ; Coutoune, Natalia ; Bueno, Joao Gabriel Ribeiro ; Maciel, Lucas Ferreira ; dosSantos, Leandro Vieira</creator><creatorcontrib>Palermo, Gisele Cristina de Lima ; Coutoune, Natalia ; Bueno, Joao Gabriel Ribeiro ; Maciel, Lucas Ferreira ; dosSantos, Leandro Vieira</creatorcontrib><description>The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based biorefineries. However, engineered C5-strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non-obvious regulatory network connection of both metabolisms using time-course transcriptome analysis. Our results indicated the vacuolar Fe2+ /Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3-fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe-S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.</description><identifier>ISSN: 1751-7915</identifier><identifier>EISSN: 1751-7915</identifier><language>eng</language><publisher>WILEY</publisher><ispartof>MICROBIAL BIOTECHNOLOGY, 2021-07, Vol.14 (5), p.2101-2115</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27837</link.rule.ids></links><search><creatorcontrib>Palermo, Gisele Cristina de Lima</creatorcontrib><creatorcontrib>Coutoune, Natalia</creatorcontrib><creatorcontrib>Bueno, Joao Gabriel Ribeiro</creatorcontrib><creatorcontrib>Maciel, Lucas Ferreira</creatorcontrib><creatorcontrib>dosSantos, Leandro Vieira</creatorcontrib><title>Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae</title><title>MICROBIAL BIOTECHNOLOGY</title><description>The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based biorefineries. However, engineered C5-strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non-obvious regulatory network connection of both metabolisms using time-course transcriptome analysis. Our results indicated the vacuolar Fe2+ /Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3-fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe-S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.</description><issn>1751-7915</issn><issn>1751-7915</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVyrsKwjAUgOEgCl7fIbOgpK2xdpaKu04uIcajRnMpOWmpby-Kg6NO_z98HTJIcp7M8iLh3a_vkyHijbElYzwdkEPZVsYH7S7UQpSGau_ed_RGo0UaPdW2Cr4B2j6MR6BnCBZclPFFtaM7qdRVBm8fCpAqCNBo1BLGpHeWBmHy6YhMN-V-vZ3dawN1A06csJIKRMoEZ0wkabFIxbLI-SrP_sTzn7GIbcyezGNWjw</recordid><startdate>20210727</startdate><enddate>20210727</enddate><creator>Palermo, Gisele Cristina de Lima</creator><creator>Coutoune, Natalia</creator><creator>Bueno, Joao Gabriel Ribeiro</creator><creator>Maciel, Lucas Ferreira</creator><creator>dosSantos, Leandro Vieira</creator><general>WILEY</general><scope>FZOIL</scope></search><sort><creationdate>20210727</creationdate><title>Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae</title><author>Palermo, Gisele Cristina de Lima ; Coutoune, Natalia ; Bueno, Joao Gabriel Ribeiro ; Maciel, Lucas Ferreira ; dosSantos, Leandro Vieira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_20_500_12942_6975873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palermo, Gisele Cristina de Lima</creatorcontrib><creatorcontrib>Coutoune, Natalia</creatorcontrib><creatorcontrib>Bueno, Joao Gabriel Ribeiro</creatorcontrib><creatorcontrib>Maciel, Lucas Ferreira</creatorcontrib><creatorcontrib>dosSantos, Leandro Vieira</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>MICROBIAL BIOTECHNOLOGY</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palermo, Gisele Cristina de Lima</au><au>Coutoune, Natalia</au><au>Bueno, Joao Gabriel Ribeiro</au><au>Maciel, Lucas Ferreira</au><au>dosSantos, Leandro Vieira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae</atitle><jtitle>MICROBIAL BIOTECHNOLOGY</jtitle><date>2021-07-27</date><risdate>2021</risdate><volume>14</volume><issue>5</issue><spage>2101</spage><epage>2115</epage><pages>2101-2115</pages><issn>1751-7915</issn><eissn>1751-7915</eissn><abstract>The development of high-performance xylose-fermenting yeast is essential to achieve feasible conversion of biomass-derived sugars in lignocellulose-based biorefineries. However, engineered C5-strains of Saccharomyces cerevisiae still present low xylose consumption rates under anaerobic conditions. Here, we explore alternative metabolisms involved in metal homeostasis, which positively affect C5 fermentation and analyse the non-obvious regulatory network connection of both metabolisms using time-course transcriptome analysis. Our results indicated the vacuolar Fe2+ /Mn2+ transporter CCC1, and the protein involved in heavy metal ion homeostasis BSD2, as promising new targets for rational metabolic engineering strategies, enhancing xylose consumption in nine and 2.3-fold compared with control. Notably, intracellular metal concentration levels were affected differently by mutations and the results were compared with positive controls isu1Δ, a Fe-S cluster scaffold protein, and ssk2Δ, a component of HOG pathway. Temporal expression profiles indicate a metabolic remodelling in response to xylose, demonstrating changes in the main sugar sensing signalling pathways.</abstract><pub>WILEY</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-7915
ispartof MICROBIAL BIOTECHNOLOGY, 2021-07, Vol.14 (5), p.2101-2115
issn 1751-7915
1751-7915
language eng
recordid cdi_kuleuven_dspace_20_500_12942_697587
source Lirias (KU Leuven Association); Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
title Exploring metal ion metabolisms to improve xylose fermentation in Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20metal%20ion%20metabolisms%20to%20improve%20xylose%20fermentation%20in%20Saccharomyces%20cerevisiae&rft.jtitle=MICROBIAL%20BIOTECHNOLOGY&rft.au=Palermo,%20Gisele%20Cristina%20de%20Lima&rft.date=2021-07-27&rft.volume=14&rft.issue=5&rft.spage=2101&rft.epage=2115&rft.pages=2101-2115&rft.issn=1751-7915&rft.eissn=1751-7915&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E20_500_12942_697587%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true