Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score
To support the global restart of elective surgery, data from an international prospective cohort study of 8492 patients (69 countries) was analysed using artificial intelligence (machine learning techniques) to develop a predictive score for mortality in surgical patients with SARS-CoV-2. We found t...
Gespeichert in:
Veröffentlicht in: | British Journal Of Surgery 2021-11, Vol.108 (11), p.1274-1292 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1292 |
---|---|
container_issue | 11 |
container_start_page | 1274 |
container_title | British Journal Of Surgery |
container_volume | 108 |
creator | COVIDSurg Collaborative |
description | To support the global restart of elective surgery, data from an international prospective cohort study of 8492 patients (69 countries) was analysed using artificial intelligence (machine learning techniques) to develop a predictive score for mortality in surgical patients with SARS-CoV-2. We found that patient rather than operation factors were the best predictors and used these to create the COVIDsurg Mortality Score (https://covidsurgrisk.app). Our data demonstrates that it is safe to restart a wide range of surgical services for selected patients. |
format | Article |
fullrecord | <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_20_500_12942_686242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20_500_12942_686242</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_20_500_12942_6862423</originalsourceid><addsrcrecordid>eNqVzL1Ow0AQBOArQCJA3mFrJKPzXRJ-OmRAUCAkHKU9ney1vcTcWXvrQF6Bp8ZIFJTQzDTfzIGaaa0vstwae6SOU3rVOrd6aWbq88lXHQWEHj0HCi0wpS0MjDVVQjFAbOAtsvieZA9NZBi8EAZJMIYauY3fozRyi7yHd5IOBmSKU0xuh1DevJRZETeZuQbpEIrnzeNtOflft6mKjKfqsPF9wvlPn6iz-7t18ZBtxx7HHQZXp8FX6Ix2S61dbq4Wxq0uV2Zh7D_x-Z-xkw-xX7kzZRY</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score</title><source>Oxford University Press Journals</source><source>Lirias (KU Leuven Association)</source><creator>COVIDSurg Collaborative</creator><creatorcontrib>COVIDSurg Collaborative</creatorcontrib><description>To support the global restart of elective surgery, data from an international prospective cohort study of 8492 patients (69 countries) was analysed using artificial intelligence (machine learning techniques) to develop a predictive score for mortality in surgical patients with SARS-CoV-2. We found that patient rather than operation factors were the best predictors and used these to create the COVIDsurg Mortality Score (https://covidsurgrisk.app). Our data demonstrates that it is safe to restart a wide range of surgical services for selected patients.</description><identifier>ISSN: 0007-1323</identifier><language>eng</language><publisher>Scandinavian University Press</publisher><ispartof>British Journal Of Surgery, 2021-11, Vol.108 (11), p.1274-1292</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27839</link.rule.ids></links><search><creatorcontrib>COVIDSurg Collaborative</creatorcontrib><title>Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score</title><title>British Journal Of Surgery</title><description>To support the global restart of elective surgery, data from an international prospective cohort study of 8492 patients (69 countries) was analysed using artificial intelligence (machine learning techniques) to develop a predictive score for mortality in surgical patients with SARS-CoV-2. We found that patient rather than operation factors were the best predictors and used these to create the COVIDsurg Mortality Score (https://covidsurgrisk.app). Our data demonstrates that it is safe to restart a wide range of surgical services for selected patients.</description><issn>0007-1323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVzL1Ow0AQBOArQCJA3mFrJKPzXRJ-OmRAUCAkHKU9ney1vcTcWXvrQF6Bp8ZIFJTQzDTfzIGaaa0vstwae6SOU3rVOrd6aWbq88lXHQWEHj0HCi0wpS0MjDVVQjFAbOAtsvieZA9NZBi8EAZJMIYauY3fozRyi7yHd5IOBmSKU0xuh1DevJRZETeZuQbpEIrnzeNtOflft6mKjKfqsPF9wvlPn6iz-7t18ZBtxx7HHQZXp8FX6Ix2S61dbq4Wxq0uV2Zh7D_x-Z-xkw-xX7kzZRY</recordid><startdate>20211111</startdate><enddate>20211111</enddate><creator>COVIDSurg Collaborative</creator><general>Scandinavian University Press</general><scope>FZOIL</scope></search><sort><creationdate>20211111</creationdate><title>Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score</title><author>COVIDSurg Collaborative</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_20_500_12942_6862423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>COVIDSurg Collaborative</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>British Journal Of Surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>COVIDSurg Collaborative</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score</atitle><jtitle>British Journal Of Surgery</jtitle><date>2021-11-11</date><risdate>2021</risdate><volume>108</volume><issue>11</issue><spage>1274</spage><epage>1292</epage><pages>1274-1292</pages><issn>0007-1323</issn><abstract>To support the global restart of elective surgery, data from an international prospective cohort study of 8492 patients (69 countries) was analysed using artificial intelligence (machine learning techniques) to develop a predictive score for mortality in surgical patients with SARS-CoV-2. We found that patient rather than operation factors were the best predictors and used these to create the COVIDsurg Mortality Score (https://covidsurgrisk.app). Our data demonstrates that it is safe to restart a wide range of surgical services for selected patients.</abstract><pub>Scandinavian University Press</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-1323 |
ispartof | British Journal Of Surgery, 2021-11, Vol.108 (11), p.1274-1292 |
issn | 0007-1323 |
language | eng |
recordid | cdi_kuleuven_dspace_20_500_12942_686242 |
source | Oxford University Press Journals; Lirias (KU Leuven Association) |
title | Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20risk%20prediction%20of%20mortality%20for%20patients%20undergoing%20surgery%20with%20perioperative%20SARS-CoV-2:%20the%20COVIDSurg%20mortality%20score&rft.jtitle=British%20Journal%20Of%20Surgery&rft.au=COVIDSurg%20Collaborative&rft.date=2021-11-11&rft.volume=108&rft.issue=11&rft.spage=1274&rft.epage=1292&rft.pages=1274-1292&rft.issn=0007-1323&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E20_500_12942_686242%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |