Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score

To support the global restart of elective surgery, data from an international prospective cohort study of 8492 patients (69 countries) was analysed using artificial intelligence (machine learning techniques) to develop a predictive score for mortality in surgical patients with SARS-CoV-2. We found t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British Journal Of Surgery 2021-11, Vol.108 (11), p.1274-1292
1. Verfasser: COVIDSurg Collaborative
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1292
container_issue 11
container_start_page 1274
container_title British Journal Of Surgery
container_volume 108
creator COVIDSurg Collaborative
description To support the global restart of elective surgery, data from an international prospective cohort study of 8492 patients (69 countries) was analysed using artificial intelligence (machine learning techniques) to develop a predictive score for mortality in surgical patients with SARS-CoV-2. We found that patient rather than operation factors were the best predictors and used these to create the COVIDsurg Mortality Score (https://covidsurgrisk.app). Our data demonstrates that it is safe to restart a wide range of surgical services for selected patients.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_20_500_12942_686242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20_500_12942_686242</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_20_500_12942_6862423</originalsourceid><addsrcrecordid>eNqVzL1Ow0AQBOArQCJA3mFrJKPzXRJ-OmRAUCAkHKU9ney1vcTcWXvrQF6Bp8ZIFJTQzDTfzIGaaa0vstwae6SOU3rVOrd6aWbq88lXHQWEHj0HCi0wpS0MjDVVQjFAbOAtsvieZA9NZBi8EAZJMIYauY3fozRyi7yHd5IOBmSKU0xuh1DevJRZETeZuQbpEIrnzeNtOflft6mKjKfqsPF9wvlPn6iz-7t18ZBtxx7HHQZXp8FX6Ix2S61dbq4Wxq0uV2Zh7D_x-Z-xkw-xX7kzZRY</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score</title><source>Oxford University Press Journals</source><source>Lirias (KU Leuven Association)</source><creator>COVIDSurg Collaborative</creator><creatorcontrib>COVIDSurg Collaborative</creatorcontrib><description>To support the global restart of elective surgery, data from an international prospective cohort study of 8492 patients (69 countries) was analysed using artificial intelligence (machine learning techniques) to develop a predictive score for mortality in surgical patients with SARS-CoV-2. We found that patient rather than operation factors were the best predictors and used these to create the COVIDsurg Mortality Score (https://covidsurgrisk.app). Our data demonstrates that it is safe to restart a wide range of surgical services for selected patients.</description><identifier>ISSN: 0007-1323</identifier><language>eng</language><publisher>Scandinavian University Press</publisher><ispartof>British Journal Of Surgery, 2021-11, Vol.108 (11), p.1274-1292</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27839</link.rule.ids></links><search><creatorcontrib>COVIDSurg Collaborative</creatorcontrib><title>Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score</title><title>British Journal Of Surgery</title><description>To support the global restart of elective surgery, data from an international prospective cohort study of 8492 patients (69 countries) was analysed using artificial intelligence (machine learning techniques) to develop a predictive score for mortality in surgical patients with SARS-CoV-2. We found that patient rather than operation factors were the best predictors and used these to create the COVIDsurg Mortality Score (https://covidsurgrisk.app). Our data demonstrates that it is safe to restart a wide range of surgical services for selected patients.</description><issn>0007-1323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVzL1Ow0AQBOArQCJA3mFrJKPzXRJ-OmRAUCAkHKU9ney1vcTcWXvrQF6Bp8ZIFJTQzDTfzIGaaa0vstwae6SOU3rVOrd6aWbq88lXHQWEHj0HCi0wpS0MjDVVQjFAbOAtsvieZA9NZBi8EAZJMIYauY3fozRyi7yHd5IOBmSKU0xuh1DevJRZETeZuQbpEIrnzeNtOflft6mKjKfqsPF9wvlPn6iz-7t18ZBtxx7HHQZXp8FX6Ix2S61dbq4Wxq0uV2Zh7D_x-Z-xkw-xX7kzZRY</recordid><startdate>20211111</startdate><enddate>20211111</enddate><creator>COVIDSurg Collaborative</creator><general>Scandinavian University Press</general><scope>FZOIL</scope></search><sort><creationdate>20211111</creationdate><title>Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score</title><author>COVIDSurg Collaborative</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_20_500_12942_6862423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>COVIDSurg Collaborative</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>British Journal Of Surgery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>COVIDSurg Collaborative</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score</atitle><jtitle>British Journal Of Surgery</jtitle><date>2021-11-11</date><risdate>2021</risdate><volume>108</volume><issue>11</issue><spage>1274</spage><epage>1292</epage><pages>1274-1292</pages><issn>0007-1323</issn><abstract>To support the global restart of elective surgery, data from an international prospective cohort study of 8492 patients (69 countries) was analysed using artificial intelligence (machine learning techniques) to develop a predictive score for mortality in surgical patients with SARS-CoV-2. We found that patient rather than operation factors were the best predictors and used these to create the COVIDsurg Mortality Score (https://covidsurgrisk.app). Our data demonstrates that it is safe to restart a wide range of surgical services for selected patients.</abstract><pub>Scandinavian University Press</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-1323
ispartof British Journal Of Surgery, 2021-11, Vol.108 (11), p.1274-1292
issn 0007-1323
language eng
recordid cdi_kuleuven_dspace_20_500_12942_686242
source Oxford University Press Journals; Lirias (KU Leuven Association)
title Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A11%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20risk%20prediction%20of%20mortality%20for%20patients%20undergoing%20surgery%20with%20perioperative%20SARS-CoV-2:%20the%20COVIDSurg%20mortality%20score&rft.jtitle=British%20Journal%20Of%20Surgery&rft.au=COVIDSurg%20Collaborative&rft.date=2021-11-11&rft.volume=108&rft.issue=11&rft.spage=1274&rft.epage=1292&rft.pages=1274-1292&rft.issn=0007-1323&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E20_500_12942_686242%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true