A hybrid scatter search/electromagnetism meta-heuristic for project scheduling

In the last few decades, several effective algorithms for solving the resource-con strained project scheduling problem have been proposed. However, the challenging nature of this problem, summarised in its strongly NP-hard status, restricts the effectiveness of exact optimisation to relatively small...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research 2006, Vol.169 (2), p.638-653
Hauptverfasser: Debels, D, De Reyck, B, Leus, Roel, Vanhoucke, M
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 653
container_issue 2
container_start_page 638
container_title European journal of operational research
container_volume 169
creator Debels, D
De Reyck, B
Leus, Roel
Vanhoucke, M
description In the last few decades, several effective algorithms for solving the resource-con strained project scheduling problem have been proposed. However, the challenging nature of this problem, summarised in its strongly NP-hard status, restricts the effectiveness of exact optimisation to relatively small instances. In this paper, we present a new meta-heuristic for this problem, able to provide near-optimal heuristic solutions for relatively large instances. The procedure combines elements from scatter search, a generic population-based evolutionary search method, and from a recently introduced heuristic method for the optimisation of unconstrained continuous functions based on an analogy with electromagnetism theory. We present computational experiments on standard benchmark datasets, compare the results with current state-of-the-art heuristics, and show that the procedure is capable of producing consistently good results for challenging instances of the resource-constrained project scheduling problem. We also demonstrate that the algorithm outperforms state-of-the-art existing heuristics. (c) 2004 Elsevier B.V. All rights reserved.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_98396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_98396</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_983963</originalsourceid><addsrcrecordid>eNqNjLsOgjAUQDtoIqL_0MnBhFiovEZjNE5O7k0tFyjySntr9O9l8AOYznLOWRCP8TQNoihMV2RtbcMYC-Mw9sj9ROvv0-iCWiURwVAL0qj6AC0oNEMnqx5Q2452gDKowRltUStaDoaOZmgma0prKFyr-2pDlqVsLWz_9Mnuenmcb8HLteDe0IvCjlKBCCN-jJM0y0We8TzhPtnPEgV-kM--_gBv0kyX</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A hybrid scatter search/electromagnetism meta-heuristic for project scheduling</title><source>Lirias (KU Leuven Association)</source><source>Elsevier ScienceDirect Journals</source><creator>Debels, D ; De Reyck, B ; Leus, Roel ; Vanhoucke, M</creator><creatorcontrib>Debels, D ; De Reyck, B ; Leus, Roel ; Vanhoucke, M</creatorcontrib><description>In the last few decades, several effective algorithms for solving the resource-con strained project scheduling problem have been proposed. However, the challenging nature of this problem, summarised in its strongly NP-hard status, restricts the effectiveness of exact optimisation to relatively small instances. In this paper, we present a new meta-heuristic for this problem, able to provide near-optimal heuristic solutions for relatively large instances. The procedure combines elements from scatter search, a generic population-based evolutionary search method, and from a recently introduced heuristic method for the optimisation of unconstrained continuous functions based on an analogy with electromagnetism theory. We present computational experiments on standard benchmark datasets, compare the results with current state-of-the-art heuristics, and show that the procedure is capable of producing consistently good results for challenging instances of the resource-constrained project scheduling problem. We also demonstrate that the algorithm outperforms state-of-the-art existing heuristics. (c) 2004 Elsevier B.V. All rights reserved.</description><identifier>ISSN: 0377-2217</identifier><language>eng</language><publisher>Elsevier science bv</publisher><ispartof>European journal of operational research, 2006, Vol.169 (2), p.638-653</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,4010,27837</link.rule.ids></links><search><creatorcontrib>Debels, D</creatorcontrib><creatorcontrib>De Reyck, B</creatorcontrib><creatorcontrib>Leus, Roel</creatorcontrib><creatorcontrib>Vanhoucke, M</creatorcontrib><title>A hybrid scatter search/electromagnetism meta-heuristic for project scheduling</title><title>European journal of operational research</title><description>In the last few decades, several effective algorithms for solving the resource-con strained project scheduling problem have been proposed. However, the challenging nature of this problem, summarised in its strongly NP-hard status, restricts the effectiveness of exact optimisation to relatively small instances. In this paper, we present a new meta-heuristic for this problem, able to provide near-optimal heuristic solutions for relatively large instances. The procedure combines elements from scatter search, a generic population-based evolutionary search method, and from a recently introduced heuristic method for the optimisation of unconstrained continuous functions based on an analogy with electromagnetism theory. We present computational experiments on standard benchmark datasets, compare the results with current state-of-the-art heuristics, and show that the procedure is capable of producing consistently good results for challenging instances of the resource-constrained project scheduling problem. We also demonstrate that the algorithm outperforms state-of-the-art existing heuristics. (c) 2004 Elsevier B.V. All rights reserved.</description><issn>0377-2217</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNjLsOgjAUQDtoIqL_0MnBhFiovEZjNE5O7k0tFyjySntr9O9l8AOYznLOWRCP8TQNoihMV2RtbcMYC-Mw9sj9ROvv0-iCWiURwVAL0qj6AC0oNEMnqx5Q2452gDKowRltUStaDoaOZmgma0prKFyr-2pDlqVsLWz_9Mnuenmcb8HLteDe0IvCjlKBCCN-jJM0y0We8TzhPtnPEgV-kM--_gBv0kyX</recordid><startdate>2006</startdate><enddate>2006</enddate><creator>Debels, D</creator><creator>De Reyck, B</creator><creator>Leus, Roel</creator><creator>Vanhoucke, M</creator><general>Elsevier science bv</general><scope>FZOIL</scope></search><sort><creationdate>2006</creationdate><title>A hybrid scatter search/electromagnetism meta-heuristic for project scheduling</title><author>Debels, D ; De Reyck, B ; Leus, Roel ; Vanhoucke, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_983963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Debels, D</creatorcontrib><creatorcontrib>De Reyck, B</creatorcontrib><creatorcontrib>Leus, Roel</creatorcontrib><creatorcontrib>Vanhoucke, M</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>European journal of operational research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Debels, D</au><au>De Reyck, B</au><au>Leus, Roel</au><au>Vanhoucke, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid scatter search/electromagnetism meta-heuristic for project scheduling</atitle><jtitle>European journal of operational research</jtitle><date>2006</date><risdate>2006</risdate><volume>169</volume><issue>2</issue><spage>638</spage><epage>653</epage><pages>638-653</pages><issn>0377-2217</issn><abstract>In the last few decades, several effective algorithms for solving the resource-con strained project scheduling problem have been proposed. However, the challenging nature of this problem, summarised in its strongly NP-hard status, restricts the effectiveness of exact optimisation to relatively small instances. In this paper, we present a new meta-heuristic for this problem, able to provide near-optimal heuristic solutions for relatively large instances. The procedure combines elements from scatter search, a generic population-based evolutionary search method, and from a recently introduced heuristic method for the optimisation of unconstrained continuous functions based on an analogy with electromagnetism theory. We present computational experiments on standard benchmark datasets, compare the results with current state-of-the-art heuristics, and show that the procedure is capable of producing consistently good results for challenging instances of the resource-constrained project scheduling problem. We also demonstrate that the algorithm outperforms state-of-the-art existing heuristics. (c) 2004 Elsevier B.V. All rights reserved.</abstract><pub>Elsevier science bv</pub></addata></record>
fulltext fulltext
identifier ISSN: 0377-2217
ispartof European journal of operational research, 2006, Vol.169 (2), p.638-653
issn 0377-2217
language eng
recordid cdi_kuleuven_dspace_123456789_98396
source Lirias (KU Leuven Association); Elsevier ScienceDirect Journals
title A hybrid scatter search/electromagnetism meta-heuristic for project scheduling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T16%3A20%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20scatter%20search/electromagnetism%20meta-heuristic%20for%20project%20scheduling&rft.jtitle=European%20journal%20of%20operational%20research&rft.au=Debels,%20D&rft.date=2006&rft.volume=169&rft.issue=2&rft.spage=638&rft.epage=653&rft.pages=638-653&rft.issn=0377-2217&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_98396%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true