A convolutional neural network for the hygrothermal assessment of timber frame walls

Currently, no general guidelines exist to determine damage-free timber frame wall compositions, as this requires a comprehensive study, taking into account the variability in boundary conditions. Such a probabilistic assessment is typically carried out through a Monte-Carlo approach, which easily be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Tijskens, Astrid, Roels, Staf, Janssen, Hans
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title
container_volume 17
creator Tijskens, Astrid
Roels, Staf
Janssen, Hans
description Currently, no general guidelines exist to determine damage-free timber frame wall compositions, as this requires a comprehensive study, taking into account the variability in boundary conditions. Such a probabilistic assessment is typically carried out through a Monte-Carlo approach, which easily becomes computationally inhibitive. This paper thus makes use of a convolutional neural network as metamodel to replace the hygrothermal model, previously demonstrated to be accurate when predicting the hygrothermal response of massive masonry walls. It is shown that the network can accurately predict the hygrothermal response, and that it can be employed with confidence to estimate the moisture damage risks.
format Conference Proceeding
fullrecord <record><control><sourceid>kuleuven_FZOIL</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_681041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_681041</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6810413</originalsourceid><addsrcrecordid>eNqNjEEOgjAQRbvQRILcYXYujAkUCrg0RuMB2JOKUyGU1nQK6O01xgO4ej95P2_BAi443_EiLlcsIuqucZZzkQvBA1YdoLFmsnr0nTVSg8HRfeFn63pQ1oFvEdrX3dnPcMNHSiIkGtB4sAp8N1zRgXJyQJil1rRmSyU1YfRjyDbnU3W87PpR4zihqW_0kA3WCU8zkRflvs7LJM6SNGTb_561f_r0_-4bQxdQDQ</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A convolutional neural network for the hygrothermal assessment of timber frame walls</title><source>Lirias (KU Leuven Association)</source><creator>Tijskens, Astrid ; Roels, Staf ; Janssen, Hans</creator><contributor>Laverge, J ; Boydens, W ; Saelens, D ; Helsen, L</contributor><creatorcontrib>Tijskens, Astrid ; Roels, Staf ; Janssen, Hans ; Laverge, J ; Boydens, W ; Saelens, D ; Helsen, L</creatorcontrib><description>Currently, no general guidelines exist to determine damage-free timber frame wall compositions, as this requires a comprehensive study, taking into account the variability in boundary conditions. Such a probabilistic assessment is typically carried out through a Monte-Carlo approach, which easily becomes computationally inhibitive. This paper thus makes use of a convolutional neural network as metamodel to replace the hygrothermal model, previously demonstrated to be accurate when predicting the hygrothermal response of massive masonry walls. It is shown that the network can accurately predict the hygrothermal response, and that it can be employed with confidence to estimate the moisture damage risks.</description><identifier>ISSN: 2522-2708</identifier><language>eng</language><publisher>International Building Performance Simulation Association (IBPSA)</publisher><ispartof>Proceedings of Building Simulation 2021, 2021, Vol.17</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,315,780,25139,27859</link.rule.ids><linktorsrc>$$Uhttps://lirias.kuleuven.be/handle/123456789/681041$$EView_record_in_KU_Leuven_Association$$FView_record_in_$$GKU_Leuven_Association$$Hfree_for_read</linktorsrc></links><search><contributor>Laverge, J</contributor><contributor>Boydens, W</contributor><contributor>Saelens, D</contributor><contributor>Helsen, L</contributor><creatorcontrib>Tijskens, Astrid</creatorcontrib><creatorcontrib>Roels, Staf</creatorcontrib><creatorcontrib>Janssen, Hans</creatorcontrib><title>A convolutional neural network for the hygrothermal assessment of timber frame walls</title><title>Proceedings of Building Simulation 2021</title><description>Currently, no general guidelines exist to determine damage-free timber frame wall compositions, as this requires a comprehensive study, taking into account the variability in boundary conditions. Such a probabilistic assessment is typically carried out through a Monte-Carlo approach, which easily becomes computationally inhibitive. This paper thus makes use of a convolutional neural network as metamodel to replace the hygrothermal model, previously demonstrated to be accurate when predicting the hygrothermal response of massive masonry walls. It is shown that the network can accurately predict the hygrothermal response, and that it can be employed with confidence to estimate the moisture damage risks.</description><issn>2522-2708</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNjEEOgjAQRbvQRILcYXYujAkUCrg0RuMB2JOKUyGU1nQK6O01xgO4ej95P2_BAi443_EiLlcsIuqucZZzkQvBA1YdoLFmsnr0nTVSg8HRfeFn63pQ1oFvEdrX3dnPcMNHSiIkGtB4sAp8N1zRgXJyQJil1rRmSyU1YfRjyDbnU3W87PpR4zihqW_0kA3WCU8zkRflvs7LJM6SNGTb_561f_r0_-4bQxdQDQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Tijskens, Astrid</creator><creator>Roels, Staf</creator><creator>Janssen, Hans</creator><general>International Building Performance Simulation Association (IBPSA)</general><scope>FZOIL</scope></search><sort><creationdate>20210901</creationdate><title>A convolutional neural network for the hygrothermal assessment of timber frame walls</title><author>Tijskens, Astrid ; Roels, Staf ; Janssen, Hans</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6810413</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Tijskens, Astrid</creatorcontrib><creatorcontrib>Roels, Staf</creatorcontrib><creatorcontrib>Janssen, Hans</creatorcontrib><collection>Lirias (KU Leuven Association)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Tijskens, Astrid</au><au>Roels, Staf</au><au>Janssen, Hans</au><au>Laverge, J</au><au>Boydens, W</au><au>Saelens, D</au><au>Helsen, L</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A convolutional neural network for the hygrothermal assessment of timber frame walls</atitle><btitle>Proceedings of Building Simulation 2021</btitle><date>2021-09-01</date><risdate>2021</risdate><volume>17</volume><issn>2522-2708</issn><abstract>Currently, no general guidelines exist to determine damage-free timber frame wall compositions, as this requires a comprehensive study, taking into account the variability in boundary conditions. Such a probabilistic assessment is typically carried out through a Monte-Carlo approach, which easily becomes computationally inhibitive. This paper thus makes use of a convolutional neural network as metamodel to replace the hygrothermal model, previously demonstrated to be accurate when predicting the hygrothermal response of massive masonry walls. It is shown that the network can accurately predict the hygrothermal response, and that it can be employed with confidence to estimate the moisture damage risks.</abstract><pub>International Building Performance Simulation Association (IBPSA)</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2522-2708
ispartof Proceedings of Building Simulation 2021, 2021, Vol.17
issn 2522-2708
language eng
recordid cdi_kuleuven_dspace_123456789_681041
source Lirias (KU Leuven Association)
title A convolutional neural network for the hygrothermal assessment of timber frame walls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A03%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven_FZOIL&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20convolutional%20neural%20network%20for%20the%20hygrothermal%20assessment%20of%20timber%20frame%20walls&rft.btitle=Proceedings%20of%20Building%20Simulation%202021&rft.au=Tijskens,%20Astrid&rft.date=2021-09-01&rft.volume=17&rft.issn=2522-2708&rft_id=info:doi/&rft_dat=%3Ckuleuven_FZOIL%3E123456789_681041%3C/kuleuven_FZOIL%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true