Fast and Efficient Generation of Isogenic Induced Pluripotent Stem Cell Lines Using Adenine Base Editing

Isogenic induced pluripotent stem cell (iPSC) lines are currently mostly created by homology directed repair evoked by a double-strand break (DSB) generated by CRISPR-Cas9. However, this process is in general lengthy and inefficient. This problem can be overcome, specifically for correction or inser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CRISPR JOURNAL 2021-08, Vol.4 (4), p.502-518
Hauptverfasser: Nami, Fatemeharefeh, Ramezankhani, Roya, Vandenabeele, Marjan, Vervliet, Tim, Vogels, Kristy, Urano, Fumihiko, Verfaillie, Catherine
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Isogenic induced pluripotent stem cell (iPSC) lines are currently mostly created by homology directed repair evoked by a double-strand break (DSB) generated by CRISPR-Cas9. However, this process is in general lengthy and inefficient. This problem can be overcome, specifically for correction or insertion of transition mutations, by using base editing (BE). BE does not require DSB formation, hence avoiding creation of genomic off-target breaks and insertions and deletions, and as it is highly efficient, it also does not require integration of selection cassettes in the genome to enrich for edited cells. BE has been successfully used in many cell types as well as in some in vivo settings to correct or insert mutations, but very few studies have reported generation of isogenic iPSC lines using BE. Here, we describe a simple and fast workflow to generate isogenic iPSCs efficiently with a compound heterozygous or a homozygous Wolfram syndrome 1 (WFS1) mutation using adenine BE, without the need to include a genomic selection cassette and without off-target modifications. We demonstrated that correctly base-edited clones can be generated by screening only five cell clones in less than a month, provided that the mutation is positioned in a correct place with regards to the protospacer adjacent motif sequence and no putative bystander bases exist.
ISSN:2573-1599