Massive Intracellular Remodeling of CuS Nanomaterials Produces Nontoxic Bioengineered Structures with Preserved Photothermal Potential

Despite efforts in producing nanoparticles with tightly controlled designs and specific physicochemical properties, these can undergo massive nano-bio interactions and bioprocessing upon internalization into cells. These transformations can generate adverse biological outcomes and premature loss of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS NANO 2021-06, Vol.15 (6), p.9782-9795
Hauptverfasser: Curcio, Alberto, Van de Walle, Aurore, Benassai, Emilia, Serrano, Aida, Luciani, Nathalie, Menguy, Nicolas, Manshian, Bella B, Sargsian, Ara, Soenen, Stefaan, Espinosa, Ana, Abou-Hassan, Ali, Wilhelm, Claire
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9795
container_issue 6
container_start_page 9782
container_title ACS NANO
container_volume 15
creator Curcio, Alberto
Van de Walle, Aurore
Benassai, Emilia
Serrano, Aida
Luciani, Nathalie
Menguy, Nicolas
Manshian, Bella B
Sargsian, Ara
Soenen, Stefaan
Espinosa, Ana
Abou-Hassan, Ali
Wilhelm, Claire
description Despite efforts in producing nanoparticles with tightly controlled designs and specific physicochemical properties, these can undergo massive nano-bio interactions and bioprocessing upon internalization into cells. These transformations can generate adverse biological outcomes and premature loss of functional efficacy. Hence, understanding the intracellular fate of nanoparticles is a necessary prerequisite for their introduction in medicine. Among nanomaterials devoted to theranostics is copper sulfide (CuS), which provides outstanding optical properties along with easy synthesis and low cost. Herein, we performed a long-term multiscale study on the bioprocessing of hollow CuS nanoparticles (CuS NPs) and rattle-like iron oxide nanoflowers@CuS core-shell hybrids (IONF@CuS NPs) when inside stem cells and cancer cells, cultured as spheroids. In the spheroids, both CuS NPs and IONF@CuS NPs are rapidly dismantled into smaller units (day 0 to 3), and hair-like nanostructures are generated (day 9 to 21). This bioprocessing triggers an adaptation of the cellular metabolism to the internalized metals without impacting cell viability, differentiation, or oxidative stress response. Throughout the remodeling, a loss of IONF-derived magnetism is observed, but, surprisingly, the CuS photothermal potential is preserved, as demonstrated by a full characterization of the photothermal conversion across the bioprocessing process. The maintained photothermal efficiency correlated well with synchrotron X-ray absorption spectroscopy measurements, evidencing a similar chemical phase for Cu but not for Fe over time. These findings evidence that the intracellular bioprocessing of CuS nanoparticles can reshape them into bioengineered nanostructures without reducing the photothermal function and therapeutic potential.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_679085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_679085</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6790853</originalsourceid><addsrcrecordid>eNqVjz1Ow0AQhbcgUkKSO0xHgSLZOP5riUBQEFmE3lrZk3hhvYNmZ01OwLnZIgcI1Svep0_v3ahFWmfFJqnydK5uvf9MkrysymKhft-092ZCeHXCukNrg9UM7zhSj9a4E9ARduEAe-1o1IJstPXQMPWhQw97ckJn08GjIXQn4xAZezgIh04CR-LHyBB59MhTbJqBhGRAHrWFhgSdRONKzY7Ri-tLLtXd89PH7mXzFSyGCV3b--84r00fsm1elFXdFmUd_2T_Ie-vI1s5S_YHdw9ing</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Massive Intracellular Remodeling of CuS Nanomaterials Produces Nontoxic Bioengineered Structures with Preserved Photothermal Potential</title><source>Lirias (KU Leuven Association)</source><source>American Chemical Society Web Editions</source><creator>Curcio, Alberto ; Van de Walle, Aurore ; Benassai, Emilia ; Serrano, Aida ; Luciani, Nathalie ; Menguy, Nicolas ; Manshian, Bella B ; Sargsian, Ara ; Soenen, Stefaan ; Espinosa, Ana ; Abou-Hassan, Ali ; Wilhelm, Claire</creator><creatorcontrib>Curcio, Alberto ; Van de Walle, Aurore ; Benassai, Emilia ; Serrano, Aida ; Luciani, Nathalie ; Menguy, Nicolas ; Manshian, Bella B ; Sargsian, Ara ; Soenen, Stefaan ; Espinosa, Ana ; Abou-Hassan, Ali ; Wilhelm, Claire</creatorcontrib><description>Despite efforts in producing nanoparticles with tightly controlled designs and specific physicochemical properties, these can undergo massive nano-bio interactions and bioprocessing upon internalization into cells. These transformations can generate adverse biological outcomes and premature loss of functional efficacy. Hence, understanding the intracellular fate of nanoparticles is a necessary prerequisite for their introduction in medicine. Among nanomaterials devoted to theranostics is copper sulfide (CuS), which provides outstanding optical properties along with easy synthesis and low cost. Herein, we performed a long-term multiscale study on the bioprocessing of hollow CuS nanoparticles (CuS NPs) and rattle-like iron oxide nanoflowers@CuS core-shell hybrids (IONF@CuS NPs) when inside stem cells and cancer cells, cultured as spheroids. In the spheroids, both CuS NPs and IONF@CuS NPs are rapidly dismantled into smaller units (day 0 to 3), and hair-like nanostructures are generated (day 9 to 21). This bioprocessing triggers an adaptation of the cellular metabolism to the internalized metals without impacting cell viability, differentiation, or oxidative stress response. Throughout the remodeling, a loss of IONF-derived magnetism is observed, but, surprisingly, the CuS photothermal potential is preserved, as demonstrated by a full characterization of the photothermal conversion across the bioprocessing process. The maintained photothermal efficiency correlated well with synchrotron X-ray absorption spectroscopy measurements, evidencing a similar chemical phase for Cu but not for Fe over time. These findings evidence that the intracellular bioprocessing of CuS nanoparticles can reshape them into bioengineered nanostructures without reducing the photothermal function and therapeutic potential.</description><identifier>ISSN: 1936-0851</identifier><language>eng</language><publisher>AMER CHEMICAL SOC</publisher><ispartof>ACS NANO, 2021-06, Vol.15 (6), p.9782-9795</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,27860</link.rule.ids></links><search><creatorcontrib>Curcio, Alberto</creatorcontrib><creatorcontrib>Van de Walle, Aurore</creatorcontrib><creatorcontrib>Benassai, Emilia</creatorcontrib><creatorcontrib>Serrano, Aida</creatorcontrib><creatorcontrib>Luciani, Nathalie</creatorcontrib><creatorcontrib>Menguy, Nicolas</creatorcontrib><creatorcontrib>Manshian, Bella B</creatorcontrib><creatorcontrib>Sargsian, Ara</creatorcontrib><creatorcontrib>Soenen, Stefaan</creatorcontrib><creatorcontrib>Espinosa, Ana</creatorcontrib><creatorcontrib>Abou-Hassan, Ali</creatorcontrib><creatorcontrib>Wilhelm, Claire</creatorcontrib><title>Massive Intracellular Remodeling of CuS Nanomaterials Produces Nontoxic Bioengineered Structures with Preserved Photothermal Potential</title><title>ACS NANO</title><description>Despite efforts in producing nanoparticles with tightly controlled designs and specific physicochemical properties, these can undergo massive nano-bio interactions and bioprocessing upon internalization into cells. These transformations can generate adverse biological outcomes and premature loss of functional efficacy. Hence, understanding the intracellular fate of nanoparticles is a necessary prerequisite for their introduction in medicine. Among nanomaterials devoted to theranostics is copper sulfide (CuS), which provides outstanding optical properties along with easy synthesis and low cost. Herein, we performed a long-term multiscale study on the bioprocessing of hollow CuS nanoparticles (CuS NPs) and rattle-like iron oxide nanoflowers@CuS core-shell hybrids (IONF@CuS NPs) when inside stem cells and cancer cells, cultured as spheroids. In the spheroids, both CuS NPs and IONF@CuS NPs are rapidly dismantled into smaller units (day 0 to 3), and hair-like nanostructures are generated (day 9 to 21). This bioprocessing triggers an adaptation of the cellular metabolism to the internalized metals without impacting cell viability, differentiation, or oxidative stress response. Throughout the remodeling, a loss of IONF-derived magnetism is observed, but, surprisingly, the CuS photothermal potential is preserved, as demonstrated by a full characterization of the photothermal conversion across the bioprocessing process. The maintained photothermal efficiency correlated well with synchrotron X-ray absorption spectroscopy measurements, evidencing a similar chemical phase for Cu but not for Fe over time. These findings evidence that the intracellular bioprocessing of CuS nanoparticles can reshape them into bioengineered nanostructures without reducing the photothermal function and therapeutic potential.</description><issn>1936-0851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVjz1Ow0AQhbcgUkKSO0xHgSLZOP5riUBQEFmE3lrZk3hhvYNmZ01OwLnZIgcI1Svep0_v3ahFWmfFJqnydK5uvf9MkrysymKhft-092ZCeHXCukNrg9UM7zhSj9a4E9ARduEAe-1o1IJstPXQMPWhQw97ckJn08GjIXQn4xAZezgIh04CR-LHyBB59MhTbJqBhGRAHrWFhgSdRONKzY7Ri-tLLtXd89PH7mXzFSyGCV3b--84r00fsm1elFXdFmUd_2T_Ie-vI1s5S_YHdw9ing</recordid><startdate>20210622</startdate><enddate>20210622</enddate><creator>Curcio, Alberto</creator><creator>Van de Walle, Aurore</creator><creator>Benassai, Emilia</creator><creator>Serrano, Aida</creator><creator>Luciani, Nathalie</creator><creator>Menguy, Nicolas</creator><creator>Manshian, Bella B</creator><creator>Sargsian, Ara</creator><creator>Soenen, Stefaan</creator><creator>Espinosa, Ana</creator><creator>Abou-Hassan, Ali</creator><creator>Wilhelm, Claire</creator><general>AMER CHEMICAL SOC</general><scope>FZOIL</scope></search><sort><creationdate>20210622</creationdate><title>Massive Intracellular Remodeling of CuS Nanomaterials Produces Nontoxic Bioengineered Structures with Preserved Photothermal Potential</title><author>Curcio, Alberto ; Van de Walle, Aurore ; Benassai, Emilia ; Serrano, Aida ; Luciani, Nathalie ; Menguy, Nicolas ; Manshian, Bella B ; Sargsian, Ara ; Soenen, Stefaan ; Espinosa, Ana ; Abou-Hassan, Ali ; Wilhelm, Claire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6790853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curcio, Alberto</creatorcontrib><creatorcontrib>Van de Walle, Aurore</creatorcontrib><creatorcontrib>Benassai, Emilia</creatorcontrib><creatorcontrib>Serrano, Aida</creatorcontrib><creatorcontrib>Luciani, Nathalie</creatorcontrib><creatorcontrib>Menguy, Nicolas</creatorcontrib><creatorcontrib>Manshian, Bella B</creatorcontrib><creatorcontrib>Sargsian, Ara</creatorcontrib><creatorcontrib>Soenen, Stefaan</creatorcontrib><creatorcontrib>Espinosa, Ana</creatorcontrib><creatorcontrib>Abou-Hassan, Ali</creatorcontrib><creatorcontrib>Wilhelm, Claire</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>ACS NANO</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curcio, Alberto</au><au>Van de Walle, Aurore</au><au>Benassai, Emilia</au><au>Serrano, Aida</au><au>Luciani, Nathalie</au><au>Menguy, Nicolas</au><au>Manshian, Bella B</au><au>Sargsian, Ara</au><au>Soenen, Stefaan</au><au>Espinosa, Ana</au><au>Abou-Hassan, Ali</au><au>Wilhelm, Claire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Massive Intracellular Remodeling of CuS Nanomaterials Produces Nontoxic Bioengineered Structures with Preserved Photothermal Potential</atitle><jtitle>ACS NANO</jtitle><date>2021-06-22</date><risdate>2021</risdate><volume>15</volume><issue>6</issue><spage>9782</spage><epage>9795</epage><pages>9782-9795</pages><issn>1936-0851</issn><abstract>Despite efforts in producing nanoparticles with tightly controlled designs and specific physicochemical properties, these can undergo massive nano-bio interactions and bioprocessing upon internalization into cells. These transformations can generate adverse biological outcomes and premature loss of functional efficacy. Hence, understanding the intracellular fate of nanoparticles is a necessary prerequisite for their introduction in medicine. Among nanomaterials devoted to theranostics is copper sulfide (CuS), which provides outstanding optical properties along with easy synthesis and low cost. Herein, we performed a long-term multiscale study on the bioprocessing of hollow CuS nanoparticles (CuS NPs) and rattle-like iron oxide nanoflowers@CuS core-shell hybrids (IONF@CuS NPs) when inside stem cells and cancer cells, cultured as spheroids. In the spheroids, both CuS NPs and IONF@CuS NPs are rapidly dismantled into smaller units (day 0 to 3), and hair-like nanostructures are generated (day 9 to 21). This bioprocessing triggers an adaptation of the cellular metabolism to the internalized metals without impacting cell viability, differentiation, or oxidative stress response. Throughout the remodeling, a loss of IONF-derived magnetism is observed, but, surprisingly, the CuS photothermal potential is preserved, as demonstrated by a full characterization of the photothermal conversion across the bioprocessing process. The maintained photothermal efficiency correlated well with synchrotron X-ray absorption spectroscopy measurements, evidencing a similar chemical phase for Cu but not for Fe over time. These findings evidence that the intracellular bioprocessing of CuS nanoparticles can reshape them into bioengineered nanostructures without reducing the photothermal function and therapeutic potential.</abstract><pub>AMER CHEMICAL SOC</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS NANO, 2021-06, Vol.15 (6), p.9782-9795
issn 1936-0851
language eng
recordid cdi_kuleuven_dspace_123456789_679085
source Lirias (KU Leuven Association); American Chemical Society Web Editions
title Massive Intracellular Remodeling of CuS Nanomaterials Produces Nontoxic Bioengineered Structures with Preserved Photothermal Potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T17%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Massive%20Intracellular%20Remodeling%20of%20CuS%20Nanomaterials%20Produces%20Nontoxic%20Bioengineered%20Structures%20with%20Preserved%20Photothermal%20Potential&rft.jtitle=ACS%20NANO&rft.au=Curcio,%20Alberto&rft.date=2021-06-22&rft.volume=15&rft.issue=6&rft.spage=9782&rft.epage=9795&rft.pages=9782-9795&rft.issn=1936-0851&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_679085%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true