Multicomponent Covalent Chemical Patterning of Graphene

The chemical patterning of graphene is being pursued tenaciously due to exciting possibilities in electronics, catalysis, sensing, and photonics. Despite the intense efforts, spatially controlled, multifunctional covalent patterning of graphene has not been achieved. The lack of control originates f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS NANO 2021-06, Vol.15 (6), p.10618-10627
Hauptverfasser: Gonzalez, Miriam C. Rodriguez, Leonhardt, Alessandra, Stadler, Hartmut, Eyley, Samuel, Thielemans, Wim, De Gendt, Stefan, Mali, Kunal S, De Feyter, Steven
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10627
container_issue 6
container_start_page 10618
container_title ACS NANO
container_volume 15
creator Gonzalez, Miriam C. Rodriguez
Leonhardt, Alessandra
Stadler, Hartmut
Eyley, Samuel
Thielemans, Wim
De Gendt, Stefan
Mali, Kunal S
De Feyter, Steven
description The chemical patterning of graphene is being pursued tenaciously due to exciting possibilities in electronics, catalysis, sensing, and photonics. Despite the intense efforts, spatially controlled, multifunctional covalent patterning of graphene has not been achieved. The lack of control originates from the inherently poor reactivity of the basal plane of graphene, which necessitates the use of harsh chemistries. Here, we demonstrate spatially resolved multicomponent covalent chemical patterning of single layer graphene using a facile and efficient method. Three different functional groups could be covalently attached to the basal plane in dense, well-defined patterns using a combination of lithography and a self-limiting variant of diazonium chemistry requiring no need for graphene activation. The layer thickness of the covalent films could be controlled down to 1 nm. This work provides a solid foundation for the fabrication of chemically patterned multifunctional graphene interfaces for device applications.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_676194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_676194</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6761943</originalsourceid><addsrcrecordid>eNpjYeA0tDQ20zWwMDXkYOAqLs4yMDA1tzA342Qw9y3NKclMzs8tyM9LzStRcM4vS8wBMzJSczOTE3MUAhJLSlKL8jLz0hXy0xTcixILMlLzUnkYWNMSc4pTeaE0N4O6m2uIs4dudmlOamlZal58SnFBYnJqvKGRsYmpmbmFZbyZuZmhpYkxKSq1iVMZX1JRYgwAV11EGA</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multicomponent Covalent Chemical Patterning of Graphene</title><source>ACS Publications</source><source>Lirias (KU Leuven Association)</source><creator>Gonzalez, Miriam C. Rodriguez ; Leonhardt, Alessandra ; Stadler, Hartmut ; Eyley, Samuel ; Thielemans, Wim ; De Gendt, Stefan ; Mali, Kunal S ; De Feyter, Steven</creator><creatorcontrib>Gonzalez, Miriam C. Rodriguez ; Leonhardt, Alessandra ; Stadler, Hartmut ; Eyley, Samuel ; Thielemans, Wim ; De Gendt, Stefan ; Mali, Kunal S ; De Feyter, Steven</creatorcontrib><description>The chemical patterning of graphene is being pursued tenaciously due to exciting possibilities in electronics, catalysis, sensing, and photonics. Despite the intense efforts, spatially controlled, multifunctional covalent patterning of graphene has not been achieved. The lack of control originates from the inherently poor reactivity of the basal plane of graphene, which necessitates the use of harsh chemistries. Here, we demonstrate spatially resolved multicomponent covalent chemical patterning of single layer graphene using a facile and efficient method. Three different functional groups could be covalently attached to the basal plane in dense, well-defined patterns using a combination of lithography and a self-limiting variant of diazonium chemistry requiring no need for graphene activation. The layer thickness of the covalent films could be controlled down to 1 nm. This work provides a solid foundation for the fabrication of chemically patterned multifunctional graphene interfaces for device applications.</description><identifier>ISSN: 1936-0851</identifier><language>eng</language><publisher>AMER CHEMICAL SOC</publisher><ispartof>ACS NANO, 2021-06, Vol.15 (6), p.10618-10627</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27837</link.rule.ids></links><search><creatorcontrib>Gonzalez, Miriam C. Rodriguez</creatorcontrib><creatorcontrib>Leonhardt, Alessandra</creatorcontrib><creatorcontrib>Stadler, Hartmut</creatorcontrib><creatorcontrib>Eyley, Samuel</creatorcontrib><creatorcontrib>Thielemans, Wim</creatorcontrib><creatorcontrib>De Gendt, Stefan</creatorcontrib><creatorcontrib>Mali, Kunal S</creatorcontrib><creatorcontrib>De Feyter, Steven</creatorcontrib><title>Multicomponent Covalent Chemical Patterning of Graphene</title><title>ACS NANO</title><description>The chemical patterning of graphene is being pursued tenaciously due to exciting possibilities in electronics, catalysis, sensing, and photonics. Despite the intense efforts, spatially controlled, multifunctional covalent patterning of graphene has not been achieved. The lack of control originates from the inherently poor reactivity of the basal plane of graphene, which necessitates the use of harsh chemistries. Here, we demonstrate spatially resolved multicomponent covalent chemical patterning of single layer graphene using a facile and efficient method. Three different functional groups could be covalently attached to the basal plane in dense, well-defined patterns using a combination of lithography and a self-limiting variant of diazonium chemistry requiring no need for graphene activation. The layer thickness of the covalent films could be controlled down to 1 nm. This work provides a solid foundation for the fabrication of chemically patterned multifunctional graphene interfaces for device applications.</description><issn>1936-0851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNpjYeA0tDQ20zWwMDXkYOAqLs4yMDA1tzA342Qw9y3NKclMzs8tyM9LzStRcM4vS8wBMzJSczOTE3MUAhJLSlKL8jLz0hXy0xTcixILMlLzUnkYWNMSc4pTeaE0N4O6m2uIs4dudmlOamlZal58SnFBYnJqvKGRsYmpmbmFZbyZuZmhpYkxKSq1iVMZX1JRYgwAV11EGA</recordid><startdate>20210622</startdate><enddate>20210622</enddate><creator>Gonzalez, Miriam C. Rodriguez</creator><creator>Leonhardt, Alessandra</creator><creator>Stadler, Hartmut</creator><creator>Eyley, Samuel</creator><creator>Thielemans, Wim</creator><creator>De Gendt, Stefan</creator><creator>Mali, Kunal S</creator><creator>De Feyter, Steven</creator><general>AMER CHEMICAL SOC</general><scope>FZOIL</scope></search><sort><creationdate>20210622</creationdate><title>Multicomponent Covalent Chemical Patterning of Graphene</title><author>Gonzalez, Miriam C. Rodriguez ; Leonhardt, Alessandra ; Stadler, Hartmut ; Eyley, Samuel ; Thielemans, Wim ; De Gendt, Stefan ; Mali, Kunal S ; De Feyter, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6761943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gonzalez, Miriam C. Rodriguez</creatorcontrib><creatorcontrib>Leonhardt, Alessandra</creatorcontrib><creatorcontrib>Stadler, Hartmut</creatorcontrib><creatorcontrib>Eyley, Samuel</creatorcontrib><creatorcontrib>Thielemans, Wim</creatorcontrib><creatorcontrib>De Gendt, Stefan</creatorcontrib><creatorcontrib>Mali, Kunal S</creatorcontrib><creatorcontrib>De Feyter, Steven</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>ACS NANO</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gonzalez, Miriam C. Rodriguez</au><au>Leonhardt, Alessandra</au><au>Stadler, Hartmut</au><au>Eyley, Samuel</au><au>Thielemans, Wim</au><au>De Gendt, Stefan</au><au>Mali, Kunal S</au><au>De Feyter, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multicomponent Covalent Chemical Patterning of Graphene</atitle><jtitle>ACS NANO</jtitle><date>2021-06-22</date><risdate>2021</risdate><volume>15</volume><issue>6</issue><spage>10618</spage><epage>10627</epage><pages>10618-10627</pages><issn>1936-0851</issn><abstract>The chemical patterning of graphene is being pursued tenaciously due to exciting possibilities in electronics, catalysis, sensing, and photonics. Despite the intense efforts, spatially controlled, multifunctional covalent patterning of graphene has not been achieved. The lack of control originates from the inherently poor reactivity of the basal plane of graphene, which necessitates the use of harsh chemistries. Here, we demonstrate spatially resolved multicomponent covalent chemical patterning of single layer graphene using a facile and efficient method. Three different functional groups could be covalently attached to the basal plane in dense, well-defined patterns using a combination of lithography and a self-limiting variant of diazonium chemistry requiring no need for graphene activation. The layer thickness of the covalent films could be controlled down to 1 nm. This work provides a solid foundation for the fabrication of chemically patterned multifunctional graphene interfaces for device applications.</abstract><pub>AMER CHEMICAL SOC</pub></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS NANO, 2021-06, Vol.15 (6), p.10618-10627
issn 1936-0851
language eng
recordid cdi_kuleuven_dspace_123456789_676194
source ACS Publications; Lirias (KU Leuven Association)
title Multicomponent Covalent Chemical Patterning of Graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A49%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multicomponent%20Covalent%20Chemical%20Patterning%20of%20Graphene&rft.jtitle=ACS%20NANO&rft.au=Gonzalez,%20Miriam%20C.%20Rodriguez&rft.date=2021-06-22&rft.volume=15&rft.issue=6&rft.spage=10618&rft.epage=10627&rft.pages=10618-10627&rft.issn=1936-0851&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_676194%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true