Local Search for Constrained Graph Clustering in Biological Networks

Semi-supervised or constrained graph clustering incorporates prior information in order to improve clustering results. Pairwise constraints are often utilized to guide the clustering process. This work addresses a constrained graph clustering problem in biological networks where (1) subgraph connect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & Operations Research 2021-08, Vol.132
Hauptverfasser: Tran, Duy Hoang, Babaki, Behrouz, Van Daele, Dries, Leyman, Pieter, De Causmaecker, Patrick
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Computers & Operations Research
container_volume 132
creator Tran, Duy Hoang
Babaki, Behrouz
Van Daele, Dries
Leyman, Pieter
De Causmaecker, Patrick
description Semi-supervised or constrained graph clustering incorporates prior information in order to improve clustering results. Pairwise constraints are often utilized to guide the clustering process. This work addresses a constrained graph clustering problem in biological networks where (1) subgraph connectivity constraints are strictly required to be satisfied and (2) clustering quality is assessed with respect to pairwise constraint violations. Existing constrained graph clustering methods often fail to fully satisfy connectivity constraints. This paper presents an iterated local search algorithm which aims to find the clustering with the highest quality in a short computing time. Experiments demonstrate how the proposed solutions are of good quality, often being optimal. Additionally, the proposed method significantly outperforms an existing branch-and-cut algorithm in terms of computational runtime and produces competitive results with regard to other local search techniques and graph clustering algorithms. Furthermore, a multilevel algorithm for clustering is designed to handle large-scale graphs. The performance of the overall scheme for a variety of coarsening methods from the literature is studied on a large number of biological networks exceeding 10,000 genes.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_674255</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_674255</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6742553</originalsourceid><addsrcrecordid>eNqNjL0OgjAYRTtoIqLv0M3BkFRKAVfxbzAuujcNfEClaUlb1MdXEx-Au5zlnDtBAaGERYQl-QzNnXuQ77J4E6D9xZRC4RsIW7a4NhYXRjtvhdRQ4ZMVfYsLNTgPVuoGS4130ijTyF91Bf8ytnMLNK2FcrD8M0Sr4-FenKNuUDA8QfPK9aIEvolpwtIs3_I0S2LGaIjW40zu356O__0AGkFITA</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Local Search for Constrained Graph Clustering in Biological Networks</title><source>Lirias (KU Leuven Association)</source><source>Elsevier ScienceDirect Journals</source><creator>Tran, Duy Hoang ; Babaki, Behrouz ; Van Daele, Dries ; Leyman, Pieter ; De Causmaecker, Patrick</creator><creatorcontrib>Tran, Duy Hoang ; Babaki, Behrouz ; Van Daele, Dries ; Leyman, Pieter ; De Causmaecker, Patrick</creatorcontrib><description>Semi-supervised or constrained graph clustering incorporates prior information in order to improve clustering results. Pairwise constraints are often utilized to guide the clustering process. This work addresses a constrained graph clustering problem in biological networks where (1) subgraph connectivity constraints are strictly required to be satisfied and (2) clustering quality is assessed with respect to pairwise constraint violations. Existing constrained graph clustering methods often fail to fully satisfy connectivity constraints. This paper presents an iterated local search algorithm which aims to find the clustering with the highest quality in a short computing time. Experiments demonstrate how the proposed solutions are of good quality, often being optimal. Additionally, the proposed method significantly outperforms an existing branch-and-cut algorithm in terms of computational runtime and produces competitive results with regard to other local search techniques and graph clustering algorithms. Furthermore, a multilevel algorithm for clustering is designed to handle large-scale graphs. The performance of the overall scheme for a variety of coarsening methods from the literature is studied on a large number of biological networks exceeding 10,000 genes.</description><identifier>ISSN: 0305-0548</identifier><language>eng</language><publisher>Elsevier</publisher><ispartof>Computers &amp; Operations Research, 2021-08, Vol.132</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27837</link.rule.ids></links><search><creatorcontrib>Tran, Duy Hoang</creatorcontrib><creatorcontrib>Babaki, Behrouz</creatorcontrib><creatorcontrib>Van Daele, Dries</creatorcontrib><creatorcontrib>Leyman, Pieter</creatorcontrib><creatorcontrib>De Causmaecker, Patrick</creatorcontrib><title>Local Search for Constrained Graph Clustering in Biological Networks</title><title>Computers &amp; Operations Research</title><description>Semi-supervised or constrained graph clustering incorporates prior information in order to improve clustering results. Pairwise constraints are often utilized to guide the clustering process. This work addresses a constrained graph clustering problem in biological networks where (1) subgraph connectivity constraints are strictly required to be satisfied and (2) clustering quality is assessed with respect to pairwise constraint violations. Existing constrained graph clustering methods often fail to fully satisfy connectivity constraints. This paper presents an iterated local search algorithm which aims to find the clustering with the highest quality in a short computing time. Experiments demonstrate how the proposed solutions are of good quality, often being optimal. Additionally, the proposed method significantly outperforms an existing branch-and-cut algorithm in terms of computational runtime and produces competitive results with regard to other local search techniques and graph clustering algorithms. Furthermore, a multilevel algorithm for clustering is designed to handle large-scale graphs. The performance of the overall scheme for a variety of coarsening methods from the literature is studied on a large number of biological networks exceeding 10,000 genes.</description><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNjL0OgjAYRTtoIqLv0M3BkFRKAVfxbzAuujcNfEClaUlb1MdXEx-Au5zlnDtBAaGERYQl-QzNnXuQ77J4E6D9xZRC4RsIW7a4NhYXRjtvhdRQ4ZMVfYsLNTgPVuoGS4130ijTyF91Bf8ytnMLNK2FcrD8M0Sr4-FenKNuUDA8QfPK9aIEvolpwtIs3_I0S2LGaIjW40zu356O__0AGkFITA</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Tran, Duy Hoang</creator><creator>Babaki, Behrouz</creator><creator>Van Daele, Dries</creator><creator>Leyman, Pieter</creator><creator>De Causmaecker, Patrick</creator><general>Elsevier</general><scope>FZOIL</scope></search><sort><creationdate>202108</creationdate><title>Local Search for Constrained Graph Clustering in Biological Networks</title><author>Tran, Duy Hoang ; Babaki, Behrouz ; Van Daele, Dries ; Leyman, Pieter ; De Causmaecker, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6742553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Duy Hoang</creatorcontrib><creatorcontrib>Babaki, Behrouz</creatorcontrib><creatorcontrib>Van Daele, Dries</creatorcontrib><creatorcontrib>Leyman, Pieter</creatorcontrib><creatorcontrib>De Causmaecker, Patrick</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Computers &amp; Operations Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Duy Hoang</au><au>Babaki, Behrouz</au><au>Van Daele, Dries</au><au>Leyman, Pieter</au><au>De Causmaecker, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Search for Constrained Graph Clustering in Biological Networks</atitle><jtitle>Computers &amp; Operations Research</jtitle><date>2021-08</date><risdate>2021</risdate><volume>132</volume><issn>0305-0548</issn><abstract>Semi-supervised or constrained graph clustering incorporates prior information in order to improve clustering results. Pairwise constraints are often utilized to guide the clustering process. This work addresses a constrained graph clustering problem in biological networks where (1) subgraph connectivity constraints are strictly required to be satisfied and (2) clustering quality is assessed with respect to pairwise constraint violations. Existing constrained graph clustering methods often fail to fully satisfy connectivity constraints. This paper presents an iterated local search algorithm which aims to find the clustering with the highest quality in a short computing time. Experiments demonstrate how the proposed solutions are of good quality, often being optimal. Additionally, the proposed method significantly outperforms an existing branch-and-cut algorithm in terms of computational runtime and produces competitive results with regard to other local search techniques and graph clustering algorithms. Furthermore, a multilevel algorithm for clustering is designed to handle large-scale graphs. The performance of the overall scheme for a variety of coarsening methods from the literature is studied on a large number of biological networks exceeding 10,000 genes.</abstract><pub>Elsevier</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & Operations Research, 2021-08, Vol.132
issn 0305-0548
language eng
recordid cdi_kuleuven_dspace_123456789_674255
source Lirias (KU Leuven Association); Elsevier ScienceDirect Journals
title Local Search for Constrained Graph Clustering in Biological Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A00%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Search%20for%20Constrained%20Graph%20Clustering%20in%20Biological%20Networks&rft.jtitle=Computers%20&%20Operations%20Research&rft.au=Tran,%20Duy%20Hoang&rft.date=2021-08&rft.volume=132&rft.issn=0305-0548&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_674255%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true