A penalty method for nonlinear programs with set exclusion constraints

A common requirement in optimal control problems arising in autonomous navigation is that the decision variables are constrained to be outside certain sets. Such set exclusion constraints represent obstacles that must be avoided by the motion system. This paper presents a simple and efficient method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica 2021-05, Vol.127
Hauptverfasser: Hermans, Ben, Pipeleers, Goele, Patrinos, Panos
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Automatica
container_volume 127
creator Hermans, Ben
Pipeleers, Goele
Patrinos, Panos
description A common requirement in optimal control problems arising in autonomous navigation is that the decision variables are constrained to be outside certain sets. Such set exclusion constraints represent obstacles that must be avoided by the motion system. This paper presents a simple and efficient method for solving optimization problems with general set exclusion and implicit constraints. The method embeds the set exclusion constraints in a quadratic penalty framework and solves the inner optimization problems using a proximal algorithm that deals directly with the implicit constraints.We derive convergence results for this method by transforming the generated iterates to points of are formulated problem with complementarity constraints. Furthermore, the practical application of the solution method is validated in numerical simulations of a model predictive control approach to path planning for a mobile robot. Finally, a runtime comparison with state-of-the-art solvers applied to the problem with complementarity constraints illustrates the efficiency of the proposed method.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_672205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_672205</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6722053</originalsourceid><addsrcrecordid>eNqVyksKwjAUQNEMFKyfPbyZAxHS9D8UsbgA5yW0rzaaJiUv1bp7HbgAHV0unBkLOOfJPuRFvmBLottn4zAXASsPMKCR2r-gR9_ZBlrrwFijlUHpYHD26mRP8FS-A0IPONV6JGUN1NaQd1IZT2s2b6Um3Hy7YtvydDme9_dR4_hAUzU0yBqrUERxkmZ5UaWZEDyJ_pG732TlJx-9AVEqSfA</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A penalty method for nonlinear programs with set exclusion constraints</title><source>Lirias (KU Leuven Association)</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Hermans, Ben ; Pipeleers, Goele ; Patrinos, Panos</creator><creatorcontrib>Hermans, Ben ; Pipeleers, Goele ; Patrinos, Panos</creatorcontrib><description>A common requirement in optimal control problems arising in autonomous navigation is that the decision variables are constrained to be outside certain sets. Such set exclusion constraints represent obstacles that must be avoided by the motion system. This paper presents a simple and efficient method for solving optimization problems with general set exclusion and implicit constraints. The method embeds the set exclusion constraints in a quadratic penalty framework and solves the inner optimization problems using a proximal algorithm that deals directly with the implicit constraints.We derive convergence results for this method by transforming the generated iterates to points of are formulated problem with complementarity constraints. Furthermore, the practical application of the solution method is validated in numerical simulations of a model predictive control approach to path planning for a mobile robot. Finally, a runtime comparison with state-of-the-art solvers applied to the problem with complementarity constraints illustrates the efficiency of the proposed method.</description><identifier>ISSN: 0005-1098</identifier><language>eng</language><publisher>Elsevier</publisher><ispartof>Automatica, 2021-05, Vol.127</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27839</link.rule.ids></links><search><creatorcontrib>Hermans, Ben</creatorcontrib><creatorcontrib>Pipeleers, Goele</creatorcontrib><creatorcontrib>Patrinos, Panos</creatorcontrib><title>A penalty method for nonlinear programs with set exclusion constraints</title><title>Automatica</title><description>A common requirement in optimal control problems arising in autonomous navigation is that the decision variables are constrained to be outside certain sets. Such set exclusion constraints represent obstacles that must be avoided by the motion system. This paper presents a simple and efficient method for solving optimization problems with general set exclusion and implicit constraints. The method embeds the set exclusion constraints in a quadratic penalty framework and solves the inner optimization problems using a proximal algorithm that deals directly with the implicit constraints.We derive convergence results for this method by transforming the generated iterates to points of are formulated problem with complementarity constraints. Furthermore, the practical application of the solution method is validated in numerical simulations of a model predictive control approach to path planning for a mobile robot. Finally, a runtime comparison with state-of-the-art solvers applied to the problem with complementarity constraints illustrates the efficiency of the proposed method.</description><issn>0005-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVyksKwjAUQNEMFKyfPbyZAxHS9D8UsbgA5yW0rzaaJiUv1bp7HbgAHV0unBkLOOfJPuRFvmBLottn4zAXASsPMKCR2r-gR9_ZBlrrwFijlUHpYHD26mRP8FS-A0IPONV6JGUN1NaQd1IZT2s2b6Um3Hy7YtvydDme9_dR4_hAUzU0yBqrUERxkmZ5UaWZEDyJ_pG732TlJx-9AVEqSfA</recordid><startdate>202105</startdate><enddate>202105</enddate><creator>Hermans, Ben</creator><creator>Pipeleers, Goele</creator><creator>Patrinos, Panos</creator><general>Elsevier</general><scope>FZOIL</scope></search><sort><creationdate>202105</creationdate><title>A penalty method for nonlinear programs with set exclusion constraints</title><author>Hermans, Ben ; Pipeleers, Goele ; Patrinos, Panos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6722053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hermans, Ben</creatorcontrib><creatorcontrib>Pipeleers, Goele</creatorcontrib><creatorcontrib>Patrinos, Panos</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Automatica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hermans, Ben</au><au>Pipeleers, Goele</au><au>Patrinos, Panos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A penalty method for nonlinear programs with set exclusion constraints</atitle><jtitle>Automatica</jtitle><date>2021-05</date><risdate>2021</risdate><volume>127</volume><issn>0005-1098</issn><abstract>A common requirement in optimal control problems arising in autonomous navigation is that the decision variables are constrained to be outside certain sets. Such set exclusion constraints represent obstacles that must be avoided by the motion system. This paper presents a simple and efficient method for solving optimization problems with general set exclusion and implicit constraints. The method embeds the set exclusion constraints in a quadratic penalty framework and solves the inner optimization problems using a proximal algorithm that deals directly with the implicit constraints.We derive convergence results for this method by transforming the generated iterates to points of are formulated problem with complementarity constraints. Furthermore, the practical application of the solution method is validated in numerical simulations of a model predictive control approach to path planning for a mobile robot. Finally, a runtime comparison with state-of-the-art solvers applied to the problem with complementarity constraints illustrates the efficiency of the proposed method.</abstract><pub>Elsevier</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica, 2021-05, Vol.127
issn 0005-1098
language eng
recordid cdi_kuleuven_dspace_123456789_672205
source Lirias (KU Leuven Association); Elsevier ScienceDirect Journals Complete
title A penalty method for nonlinear programs with set exclusion constraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A14%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20penalty%20method%20for%20nonlinear%20programs%20with%20set%20exclusion%20constraints&rft.jtitle=Automatica&rft.au=Hermans,%20Ben&rft.date=2021-05&rft.volume=127&rft.issn=0005-1098&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_672205%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true