Combination of snapshot hyperspectral retinal imaging and optical coherence tomography to identify Alzheimer's disease patients

INTRODUCTION: The eye offers potential for the diagnosis of Alzheimer's disease (AD) with retinal imaging techniques being explored to quantify amyloid accumulation and aspects of neurodegeneration. To assess these changes, this proof-of-concept study combined hyperspectral imaging and optical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alzheimers Research & Therapy 2020-11, Vol.12 (1)
Hauptverfasser: Lemmens, Sophie, Van Craenendonck, Toon, Van Eijgen, Jan, De Groef, Lies, Bruffaerts, Rose, de Jesus, Danilo Andrade, Charle, Wouter, Jayapala, Murali, Sunaric-Mégevand, Gordana, Standaert, Arnout, Theunis, Jan, Van Keer, Karel, Vandenbulcke, Mathieu, Moons, Lieve, Vandenberghe, Rik, De Boever, Patrick, Stalmans, Ingeborg
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Alzheimers Research & Therapy
container_volume 12
creator Lemmens, Sophie
Van Craenendonck, Toon
Van Eijgen, Jan
De Groef, Lies
Bruffaerts, Rose
de Jesus, Danilo Andrade
Charle, Wouter
Jayapala, Murali
Sunaric-Mégevand, Gordana
Standaert, Arnout
Theunis, Jan
Van Keer, Karel
Vandenbulcke, Mathieu
Moons, Lieve
Vandenberghe, Rik
De Boever, Patrick
Stalmans, Ingeborg
description INTRODUCTION: The eye offers potential for the diagnosis of Alzheimer's disease (AD) with retinal imaging techniques being explored to quantify amyloid accumulation and aspects of neurodegeneration. To assess these changes, this proof-of-concept study combined hyperspectral imaging and optical coherence tomography to build a classification model to differentiate between AD patients and controls. METHODS: In a memory clinic setting, patients with a diagnosis of clinically probable AD (n = 10) or biomarker-proven AD (n = 7) and controls (n = 22) underwent non-invasive retinal imaging with an easy-to-use hyperspectral snapshot camera that collects information from 16 spectral bands (460-620 nm, 10-nm bandwidth) in one capture. The individuals were also imaged using optical coherence tomography for assessing retinal nerve fiber layer thickness (RNFL). Dedicated image preprocessing analysis was followed by machine learning to discriminate between both groups. RESULTS: Hyperspectral data and retinal nerve fiber layer thickness data were used in a linear discriminant classification model to discriminate between AD patients and controls. Nested leave-one-out cross-validation resulted in a fair accuracy, providing an area under the receiver operating characteristic curve of 0.74 (95% confidence interval [0.60-0.89]). Inner loop results showed that the inclusion of the RNFL features resulted in an improvement of the area under the receiver operating characteristic curve: for the most informative region assessed, the average area under the receiver operating characteristic curve was 0.70 (95% confidence interval [0.55, 0.86]) and 0.79 (95% confidence interval [0.65, 0.93]), respectively. The robust statistics used in this study reduces the risk of overfitting and partly compensates for the limited sample size. CONCLUSIONS: This study in a memory-clinic-based cohort supports the potential of hyperspectral imaging and suggests an added value of combining retinal imaging modalities. Standardization and longitudinal data on fully amyloid-phenotyped cohorts are required to elucidate the relationship between retinal structure and cognitive function and to evaluate the robustness of the classification model.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_663238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_663238</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6632383</originalsourceid><addsrcrecordid>eNqNjTFPwzAUhC0EEqXwH97WAVVq4tZNRlSB-AHs0avzErt1bMvPRYSFv44HBsZO9-nudHcjFtV-16zbqpW3__hePDCfNhul6ma7ED-HMB2tx2yDhzAAe4xsQgYzR0ocSeeEDhLlUnJgJxytHwF9DyFmq4ung6FEXhPkMIUxYTRzQbA9-WyHGV7ctyE7UVox9JYJmSCWxxLzo7gb0DE9_elSrN5ePw7v6_PF0eWTfNdzRE1dVcvtTu2btlNK1rKRS_F8XbPLX1lev_sLDm9h6g</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Combination of snapshot hyperspectral retinal imaging and optical coherence tomography to identify Alzheimer's disease patients</title><source>Lirias (KU Leuven Association)</source><source>DOAJ Directory of Open Access Journals</source><source>SpringerNature Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Lemmens, Sophie ; Van Craenendonck, Toon ; Van Eijgen, Jan ; De Groef, Lies ; Bruffaerts, Rose ; de Jesus, Danilo Andrade ; Charle, Wouter ; Jayapala, Murali ; Sunaric-Mégevand, Gordana ; Standaert, Arnout ; Theunis, Jan ; Van Keer, Karel ; Vandenbulcke, Mathieu ; Moons, Lieve ; Vandenberghe, Rik ; De Boever, Patrick ; Stalmans, Ingeborg</creator><creatorcontrib>Lemmens, Sophie ; Van Craenendonck, Toon ; Van Eijgen, Jan ; De Groef, Lies ; Bruffaerts, Rose ; de Jesus, Danilo Andrade ; Charle, Wouter ; Jayapala, Murali ; Sunaric-Mégevand, Gordana ; Standaert, Arnout ; Theunis, Jan ; Van Keer, Karel ; Vandenbulcke, Mathieu ; Moons, Lieve ; Vandenberghe, Rik ; De Boever, Patrick ; Stalmans, Ingeborg</creatorcontrib><description>INTRODUCTION: The eye offers potential for the diagnosis of Alzheimer's disease (AD) with retinal imaging techniques being explored to quantify amyloid accumulation and aspects of neurodegeneration. To assess these changes, this proof-of-concept study combined hyperspectral imaging and optical coherence tomography to build a classification model to differentiate between AD patients and controls. METHODS: In a memory clinic setting, patients with a diagnosis of clinically probable AD (n = 10) or biomarker-proven AD (n = 7) and controls (n = 22) underwent non-invasive retinal imaging with an easy-to-use hyperspectral snapshot camera that collects information from 16 spectral bands (460-620 nm, 10-nm bandwidth) in one capture. The individuals were also imaged using optical coherence tomography for assessing retinal nerve fiber layer thickness (RNFL). Dedicated image preprocessing analysis was followed by machine learning to discriminate between both groups. RESULTS: Hyperspectral data and retinal nerve fiber layer thickness data were used in a linear discriminant classification model to discriminate between AD patients and controls. Nested leave-one-out cross-validation resulted in a fair accuracy, providing an area under the receiver operating characteristic curve of 0.74 (95% confidence interval [0.60-0.89]). Inner loop results showed that the inclusion of the RNFL features resulted in an improvement of the area under the receiver operating characteristic curve: for the most informative region assessed, the average area under the receiver operating characteristic curve was 0.70 (95% confidence interval [0.55, 0.86]) and 0.79 (95% confidence interval [0.65, 0.93]), respectively. The robust statistics used in this study reduces the risk of overfitting and partly compensates for the limited sample size. CONCLUSIONS: This study in a memory-clinic-based cohort supports the potential of hyperspectral imaging and suggests an added value of combining retinal imaging modalities. Standardization and longitudinal data on fully amyloid-phenotyped cohorts are required to elucidate the relationship between retinal structure and cognitive function and to evaluate the robustness of the classification model.</description><identifier>ISSN: 1758-9193</identifier><identifier>EISSN: 1758-9193</identifier><language>eng</language><publisher>BMC</publisher><ispartof>Alzheimers Research &amp; Therapy, 2020-11, Vol.12 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,27860</link.rule.ids></links><search><creatorcontrib>Lemmens, Sophie</creatorcontrib><creatorcontrib>Van Craenendonck, Toon</creatorcontrib><creatorcontrib>Van Eijgen, Jan</creatorcontrib><creatorcontrib>De Groef, Lies</creatorcontrib><creatorcontrib>Bruffaerts, Rose</creatorcontrib><creatorcontrib>de Jesus, Danilo Andrade</creatorcontrib><creatorcontrib>Charle, Wouter</creatorcontrib><creatorcontrib>Jayapala, Murali</creatorcontrib><creatorcontrib>Sunaric-Mégevand, Gordana</creatorcontrib><creatorcontrib>Standaert, Arnout</creatorcontrib><creatorcontrib>Theunis, Jan</creatorcontrib><creatorcontrib>Van Keer, Karel</creatorcontrib><creatorcontrib>Vandenbulcke, Mathieu</creatorcontrib><creatorcontrib>Moons, Lieve</creatorcontrib><creatorcontrib>Vandenberghe, Rik</creatorcontrib><creatorcontrib>De Boever, Patrick</creatorcontrib><creatorcontrib>Stalmans, Ingeborg</creatorcontrib><title>Combination of snapshot hyperspectral retinal imaging and optical coherence tomography to identify Alzheimer's disease patients</title><title>Alzheimers Research &amp; Therapy</title><description>INTRODUCTION: The eye offers potential for the diagnosis of Alzheimer's disease (AD) with retinal imaging techniques being explored to quantify amyloid accumulation and aspects of neurodegeneration. To assess these changes, this proof-of-concept study combined hyperspectral imaging and optical coherence tomography to build a classification model to differentiate between AD patients and controls. METHODS: In a memory clinic setting, patients with a diagnosis of clinically probable AD (n = 10) or biomarker-proven AD (n = 7) and controls (n = 22) underwent non-invasive retinal imaging with an easy-to-use hyperspectral snapshot camera that collects information from 16 spectral bands (460-620 nm, 10-nm bandwidth) in one capture. The individuals were also imaged using optical coherence tomography for assessing retinal nerve fiber layer thickness (RNFL). Dedicated image preprocessing analysis was followed by machine learning to discriminate between both groups. RESULTS: Hyperspectral data and retinal nerve fiber layer thickness data were used in a linear discriminant classification model to discriminate between AD patients and controls. Nested leave-one-out cross-validation resulted in a fair accuracy, providing an area under the receiver operating characteristic curve of 0.74 (95% confidence interval [0.60-0.89]). Inner loop results showed that the inclusion of the RNFL features resulted in an improvement of the area under the receiver operating characteristic curve: for the most informative region assessed, the average area under the receiver operating characteristic curve was 0.70 (95% confidence interval [0.55, 0.86]) and 0.79 (95% confidence interval [0.65, 0.93]), respectively. The robust statistics used in this study reduces the risk of overfitting and partly compensates for the limited sample size. CONCLUSIONS: This study in a memory-clinic-based cohort supports the potential of hyperspectral imaging and suggests an added value of combining retinal imaging modalities. Standardization and longitudinal data on fully amyloid-phenotyped cohorts are required to elucidate the relationship between retinal structure and cognitive function and to evaluate the robustness of the classification model.</description><issn>1758-9193</issn><issn>1758-9193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNjTFPwzAUhC0EEqXwH97WAVVq4tZNRlSB-AHs0avzErt1bMvPRYSFv44HBsZO9-nudHcjFtV-16zbqpW3__hePDCfNhul6ma7ED-HMB2tx2yDhzAAe4xsQgYzR0ocSeeEDhLlUnJgJxytHwF9DyFmq4ung6FEXhPkMIUxYTRzQbA9-WyHGV7ctyE7UVox9JYJmSCWxxLzo7gb0DE9_elSrN5ePw7v6_PF0eWTfNdzRE1dVcvtTu2btlNK1rKRS_F8XbPLX1lev_sLDm9h6g</recordid><startdate>20201110</startdate><enddate>20201110</enddate><creator>Lemmens, Sophie</creator><creator>Van Craenendonck, Toon</creator><creator>Van Eijgen, Jan</creator><creator>De Groef, Lies</creator><creator>Bruffaerts, Rose</creator><creator>de Jesus, Danilo Andrade</creator><creator>Charle, Wouter</creator><creator>Jayapala, Murali</creator><creator>Sunaric-Mégevand, Gordana</creator><creator>Standaert, Arnout</creator><creator>Theunis, Jan</creator><creator>Van Keer, Karel</creator><creator>Vandenbulcke, Mathieu</creator><creator>Moons, Lieve</creator><creator>Vandenberghe, Rik</creator><creator>De Boever, Patrick</creator><creator>Stalmans, Ingeborg</creator><general>BMC</general><scope>FZOIL</scope></search><sort><creationdate>20201110</creationdate><title>Combination of snapshot hyperspectral retinal imaging and optical coherence tomography to identify Alzheimer's disease patients</title><author>Lemmens, Sophie ; Van Craenendonck, Toon ; Van Eijgen, Jan ; De Groef, Lies ; Bruffaerts, Rose ; de Jesus, Danilo Andrade ; Charle, Wouter ; Jayapala, Murali ; Sunaric-Mégevand, Gordana ; Standaert, Arnout ; Theunis, Jan ; Van Keer, Karel ; Vandenbulcke, Mathieu ; Moons, Lieve ; Vandenberghe, Rik ; De Boever, Patrick ; Stalmans, Ingeborg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6632383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lemmens, Sophie</creatorcontrib><creatorcontrib>Van Craenendonck, Toon</creatorcontrib><creatorcontrib>Van Eijgen, Jan</creatorcontrib><creatorcontrib>De Groef, Lies</creatorcontrib><creatorcontrib>Bruffaerts, Rose</creatorcontrib><creatorcontrib>de Jesus, Danilo Andrade</creatorcontrib><creatorcontrib>Charle, Wouter</creatorcontrib><creatorcontrib>Jayapala, Murali</creatorcontrib><creatorcontrib>Sunaric-Mégevand, Gordana</creatorcontrib><creatorcontrib>Standaert, Arnout</creatorcontrib><creatorcontrib>Theunis, Jan</creatorcontrib><creatorcontrib>Van Keer, Karel</creatorcontrib><creatorcontrib>Vandenbulcke, Mathieu</creatorcontrib><creatorcontrib>Moons, Lieve</creatorcontrib><creatorcontrib>Vandenberghe, Rik</creatorcontrib><creatorcontrib>De Boever, Patrick</creatorcontrib><creatorcontrib>Stalmans, Ingeborg</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Alzheimers Research &amp; Therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lemmens, Sophie</au><au>Van Craenendonck, Toon</au><au>Van Eijgen, Jan</au><au>De Groef, Lies</au><au>Bruffaerts, Rose</au><au>de Jesus, Danilo Andrade</au><au>Charle, Wouter</au><au>Jayapala, Murali</au><au>Sunaric-Mégevand, Gordana</au><au>Standaert, Arnout</au><au>Theunis, Jan</au><au>Van Keer, Karel</au><au>Vandenbulcke, Mathieu</au><au>Moons, Lieve</au><au>Vandenberghe, Rik</au><au>De Boever, Patrick</au><au>Stalmans, Ingeborg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combination of snapshot hyperspectral retinal imaging and optical coherence tomography to identify Alzheimer's disease patients</atitle><jtitle>Alzheimers Research &amp; Therapy</jtitle><date>2020-11-10</date><risdate>2020</risdate><volume>12</volume><issue>1</issue><issn>1758-9193</issn><eissn>1758-9193</eissn><abstract>INTRODUCTION: The eye offers potential for the diagnosis of Alzheimer's disease (AD) with retinal imaging techniques being explored to quantify amyloid accumulation and aspects of neurodegeneration. To assess these changes, this proof-of-concept study combined hyperspectral imaging and optical coherence tomography to build a classification model to differentiate between AD patients and controls. METHODS: In a memory clinic setting, patients with a diagnosis of clinically probable AD (n = 10) or biomarker-proven AD (n = 7) and controls (n = 22) underwent non-invasive retinal imaging with an easy-to-use hyperspectral snapshot camera that collects information from 16 spectral bands (460-620 nm, 10-nm bandwidth) in one capture. The individuals were also imaged using optical coherence tomography for assessing retinal nerve fiber layer thickness (RNFL). Dedicated image preprocessing analysis was followed by machine learning to discriminate between both groups. RESULTS: Hyperspectral data and retinal nerve fiber layer thickness data were used in a linear discriminant classification model to discriminate between AD patients and controls. Nested leave-one-out cross-validation resulted in a fair accuracy, providing an area under the receiver operating characteristic curve of 0.74 (95% confidence interval [0.60-0.89]). Inner loop results showed that the inclusion of the RNFL features resulted in an improvement of the area under the receiver operating characteristic curve: for the most informative region assessed, the average area under the receiver operating characteristic curve was 0.70 (95% confidence interval [0.55, 0.86]) and 0.79 (95% confidence interval [0.65, 0.93]), respectively. The robust statistics used in this study reduces the risk of overfitting and partly compensates for the limited sample size. CONCLUSIONS: This study in a memory-clinic-based cohort supports the potential of hyperspectral imaging and suggests an added value of combining retinal imaging modalities. Standardization and longitudinal data on fully amyloid-phenotyped cohorts are required to elucidate the relationship between retinal structure and cognitive function and to evaluate the robustness of the classification model.</abstract><pub>BMC</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1758-9193
ispartof Alzheimers Research & Therapy, 2020-11, Vol.12 (1)
issn 1758-9193
1758-9193
language eng
recordid cdi_kuleuven_dspace_123456789_663238
source Lirias (KU Leuven Association); DOAJ Directory of Open Access Journals; SpringerNature Journals; PubMed Central Open Access; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
title Combination of snapshot hyperspectral retinal imaging and optical coherence tomography to identify Alzheimer's disease patients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combination%20of%20snapshot%20hyperspectral%20retinal%20imaging%20and%20optical%20coherence%20tomography%20to%20identify%20Alzheimer's%20disease%20patients&rft.jtitle=Alzheimers%20Research%20&%20Therapy&rft.au=Lemmens,%20Sophie&rft.date=2020-11-10&rft.volume=12&rft.issue=1&rft.issn=1758-9193&rft.eissn=1758-9193&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_663238%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true