Upscaling Household Survey Data Using Remote Sensing to Map Socioeconomic Groups in Kampala, Uganda
Sub-Saharan African cities are expanding horizontally, demonstrating spatial patterns of urban sprawl and socioeconomic segregation. An important research gap around the geographies of urban populations is that city-wide analyses mask local socioeconomic inequalities. This research focuses on those...
Gespeichert in:
Veröffentlicht in: | Remote Sensing 2020-10, Vol.12 (20) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Remote Sensing |
container_volume | 12 |
creator | Hemerijckx, Lisa Van Emelen, Sam Reymenants, Joachim Davis, Jac Verburg, Peter Lwasa, Shuaib Van Rompaey, Anton |
description | Sub-Saharan African cities are expanding horizontally, demonstrating spatial patterns of urban sprawl and socioeconomic segregation. An important research gap around the geographies of urban populations is that city-wide analyses mask local socioeconomic inequalities. This research focuses on those inequalities by identifying the spatial settlement patterns of socioeconomic groups within the Greater Kampala Metropolitan Area (Uganda). Findings are based on a novel dataset,
an extensive household survey with 541 households, conducted in Kampala in 2019. To identify different socioeconomic groups, a k-prototypes clustering method was applied to the survey data. A maximum likelihood classification method was applied on a recent Landsat-8 image of the city and compared to the socioeconomic clustering through a fuzzy error matrix. The resulting maps show how different socioeconomic clusters are located around the city. We propose a simple method to
upscale household survey responses to a larger study area, to use these data as a base map for further analysis or urban planning purposes. Obtaining a better understanding of the spatial variability in socioeconomic dynamics can aid urban policy-makers to target their decision-making processes towards a more favorable and sustainable future. |
format | Article |
fullrecord | <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_661938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_661938</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6619383</originalsourceid><addsrcrecordid>eNqNjDFvwjAUhK0KJBDlP7yNoSAldghkbqFIiIU0c_TkPCCt42dhG9F_31IxdOSWu093uicxlMlCzjJZyN6_PBBj7z-TXymVFkk2FLpyXqNp7RE2HD2d2DRQxvOFvuENA0Llb92eOg4EJdk_DAw7dFCybpk0W-5aDe9njs5Da2GLnUODU6iOaBt8Fv0DGk_ju4_EZL36eN3MvqKheCFbN96hpjqVKpvni2VR53laqKUaiZfHlnW4BvX47w95IFXF</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Upscaling Household Survey Data Using Remote Sensing to Map Socioeconomic Groups in Kampala, Uganda</title><source>Lirias (KU Leuven Association)</source><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hemerijckx, Lisa ; Van Emelen, Sam ; Reymenants, Joachim ; Davis, Jac ; Verburg, Peter ; Lwasa, Shuaib ; Van Rompaey, Anton</creator><creatorcontrib>Hemerijckx, Lisa ; Van Emelen, Sam ; Reymenants, Joachim ; Davis, Jac ; Verburg, Peter ; Lwasa, Shuaib ; Van Rompaey, Anton</creatorcontrib><description>Sub-Saharan African cities are expanding horizontally, demonstrating spatial patterns of urban sprawl and socioeconomic segregation. An important research gap around the geographies of urban populations is that city-wide analyses mask local socioeconomic inequalities. This research focuses on those inequalities by identifying the spatial settlement patterns of socioeconomic groups within the Greater Kampala Metropolitan Area (Uganda). Findings are based on a novel dataset,
an extensive household survey with 541 households, conducted in Kampala in 2019. To identify different socioeconomic groups, a k-prototypes clustering method was applied to the survey data. A maximum likelihood classification method was applied on a recent Landsat-8 image of the city and compared to the socioeconomic clustering through a fuzzy error matrix. The resulting maps show how different socioeconomic clusters are located around the city. We propose a simple method to
upscale household survey responses to a larger study area, to use these data as a base map for further analysis or urban planning purposes. Obtaining a better understanding of the spatial variability in socioeconomic dynamics can aid urban policy-makers to target their decision-making processes towards a more favorable and sustainable future.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><language>eng</language><publisher>MDPI AG</publisher><ispartof>Remote Sensing, 2020-10, Vol.12 (20)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27839</link.rule.ids></links><search><creatorcontrib>Hemerijckx, Lisa</creatorcontrib><creatorcontrib>Van Emelen, Sam</creatorcontrib><creatorcontrib>Reymenants, Joachim</creatorcontrib><creatorcontrib>Davis, Jac</creatorcontrib><creatorcontrib>Verburg, Peter</creatorcontrib><creatorcontrib>Lwasa, Shuaib</creatorcontrib><creatorcontrib>Van Rompaey, Anton</creatorcontrib><title>Upscaling Household Survey Data Using Remote Sensing to Map Socioeconomic Groups in Kampala, Uganda</title><title>Remote Sensing</title><description>Sub-Saharan African cities are expanding horizontally, demonstrating spatial patterns of urban sprawl and socioeconomic segregation. An important research gap around the geographies of urban populations is that city-wide analyses mask local socioeconomic inequalities. This research focuses on those inequalities by identifying the spatial settlement patterns of socioeconomic groups within the Greater Kampala Metropolitan Area (Uganda). Findings are based on a novel dataset,
an extensive household survey with 541 households, conducted in Kampala in 2019. To identify different socioeconomic groups, a k-prototypes clustering method was applied to the survey data. A maximum likelihood classification method was applied on a recent Landsat-8 image of the city and compared to the socioeconomic clustering through a fuzzy error matrix. The resulting maps show how different socioeconomic clusters are located around the city. We propose a simple method to
upscale household survey responses to a larger study area, to use these data as a base map for further analysis or urban planning purposes. Obtaining a better understanding of the spatial variability in socioeconomic dynamics can aid urban policy-makers to target their decision-making processes towards a more favorable and sustainable future.</description><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNjDFvwjAUhK0KJBDlP7yNoSAldghkbqFIiIU0c_TkPCCt42dhG9F_31IxdOSWu093uicxlMlCzjJZyN6_PBBj7z-TXymVFkk2FLpyXqNp7RE2HD2d2DRQxvOFvuENA0Llb92eOg4EJdk_DAw7dFCybpk0W-5aDe9njs5Da2GLnUODU6iOaBt8Fv0DGk_ju4_EZL36eN3MvqKheCFbN96hpjqVKpvni2VR53laqKUaiZfHlnW4BvX47w95IFXF</recordid><startdate>20201021</startdate><enddate>20201021</enddate><creator>Hemerijckx, Lisa</creator><creator>Van Emelen, Sam</creator><creator>Reymenants, Joachim</creator><creator>Davis, Jac</creator><creator>Verburg, Peter</creator><creator>Lwasa, Shuaib</creator><creator>Van Rompaey, Anton</creator><general>MDPI AG</general><scope>FZOIL</scope></search><sort><creationdate>20201021</creationdate><title>Upscaling Household Survey Data Using Remote Sensing to Map Socioeconomic Groups in Kampala, Uganda</title><author>Hemerijckx, Lisa ; Van Emelen, Sam ; Reymenants, Joachim ; Davis, Jac ; Verburg, Peter ; Lwasa, Shuaib ; Van Rompaey, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6619383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hemerijckx, Lisa</creatorcontrib><creatorcontrib>Van Emelen, Sam</creatorcontrib><creatorcontrib>Reymenants, Joachim</creatorcontrib><creatorcontrib>Davis, Jac</creatorcontrib><creatorcontrib>Verburg, Peter</creatorcontrib><creatorcontrib>Lwasa, Shuaib</creatorcontrib><creatorcontrib>Van Rompaey, Anton</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Remote Sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hemerijckx, Lisa</au><au>Van Emelen, Sam</au><au>Reymenants, Joachim</au><au>Davis, Jac</au><au>Verburg, Peter</au><au>Lwasa, Shuaib</au><au>Van Rompaey, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upscaling Household Survey Data Using Remote Sensing to Map Socioeconomic Groups in Kampala, Uganda</atitle><jtitle>Remote Sensing</jtitle><date>2020-10-21</date><risdate>2020</risdate><volume>12</volume><issue>20</issue><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Sub-Saharan African cities are expanding horizontally, demonstrating spatial patterns of urban sprawl and socioeconomic segregation. An important research gap around the geographies of urban populations is that city-wide analyses mask local socioeconomic inequalities. This research focuses on those inequalities by identifying the spatial settlement patterns of socioeconomic groups within the Greater Kampala Metropolitan Area (Uganda). Findings are based on a novel dataset,
an extensive household survey with 541 households, conducted in Kampala in 2019. To identify different socioeconomic groups, a k-prototypes clustering method was applied to the survey data. A maximum likelihood classification method was applied on a recent Landsat-8 image of the city and compared to the socioeconomic clustering through a fuzzy error matrix. The resulting maps show how different socioeconomic clusters are located around the city. We propose a simple method to
upscale household survey responses to a larger study area, to use these data as a base map for further analysis or urban planning purposes. Obtaining a better understanding of the spatial variability in socioeconomic dynamics can aid urban policy-makers to target their decision-making processes towards a more favorable and sustainable future.</abstract><pub>MDPI AG</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2072-4292 |
ispartof | Remote Sensing, 2020-10, Vol.12 (20) |
issn | 2072-4292 2072-4292 |
language | eng |
recordid | cdi_kuleuven_dspace_123456789_661938 |
source | Lirias (KU Leuven Association); DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals |
title | Upscaling Household Survey Data Using Remote Sensing to Map Socioeconomic Groups in Kampala, Uganda |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upscaling%20Household%20Survey%20Data%20Using%20Remote%20Sensing%20to%20Map%20Socioeconomic%20Groups%20in%20Kampala,%20Uganda&rft.jtitle=Remote%20Sensing&rft.au=Hemerijckx,%20Lisa&rft.date=2020-10-21&rft.volume=12&rft.issue=20&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_661938%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |