Upscaling Household Survey Data Using Remote Sensing to Map Socioeconomic Groups in Kampala, Uganda

Sub-Saharan African cities are expanding horizontally, demonstrating spatial patterns of urban sprawl and socioeconomic segregation. An important research gap around the geographies of urban populations is that city-wide analyses mask local socioeconomic inequalities. This research focuses on those...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Remote Sensing 2020-10, Vol.12 (20)
Hauptverfasser: Hemerijckx, Lisa, Van Emelen, Sam, Reymenants, Joachim, Davis, Jac, Verburg, Peter, Lwasa, Shuaib, Van Rompaey, Anton
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Remote Sensing
container_volume 12
creator Hemerijckx, Lisa
Van Emelen, Sam
Reymenants, Joachim
Davis, Jac
Verburg, Peter
Lwasa, Shuaib
Van Rompaey, Anton
description Sub-Saharan African cities are expanding horizontally, demonstrating spatial patterns of urban sprawl and socioeconomic segregation. An important research gap around the geographies of urban populations is that city-wide analyses mask local socioeconomic inequalities. This research focuses on those inequalities by identifying the spatial settlement patterns of socioeconomic groups within the Greater Kampala Metropolitan Area (Uganda). Findings are based on a novel dataset, an extensive household survey with 541 households, conducted in Kampala in 2019. To identify different socioeconomic groups, a k-prototypes clustering method was applied to the survey data. A maximum likelihood classification method was applied on a recent Landsat-8 image of the city and compared to the socioeconomic clustering through a fuzzy error matrix. The resulting maps show how different socioeconomic clusters are located around the city. We propose a simple method to upscale household survey responses to a larger study area, to use these data as a base map for further analysis or urban planning purposes. Obtaining a better understanding of the spatial variability in socioeconomic dynamics can aid urban policy-makers to target their decision-making processes towards a more favorable and sustainable future.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_661938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_661938</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6619383</originalsourceid><addsrcrecordid>eNqNjDFvwjAUhK0KJBDlP7yNoSAldghkbqFIiIU0c_TkPCCt42dhG9F_31IxdOSWu093uicxlMlCzjJZyN6_PBBj7z-TXymVFkk2FLpyXqNp7RE2HD2d2DRQxvOFvuENA0Llb92eOg4EJdk_DAw7dFCybpk0W-5aDe9njs5Da2GLnUODU6iOaBt8Fv0DGk_ju4_EZL36eN3MvqKheCFbN96hpjqVKpvni2VR53laqKUaiZfHlnW4BvX47w95IFXF</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Upscaling Household Survey Data Using Remote Sensing to Map Socioeconomic Groups in Kampala, Uganda</title><source>Lirias (KU Leuven Association)</source><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hemerijckx, Lisa ; Van Emelen, Sam ; Reymenants, Joachim ; Davis, Jac ; Verburg, Peter ; Lwasa, Shuaib ; Van Rompaey, Anton</creator><creatorcontrib>Hemerijckx, Lisa ; Van Emelen, Sam ; Reymenants, Joachim ; Davis, Jac ; Verburg, Peter ; Lwasa, Shuaib ; Van Rompaey, Anton</creatorcontrib><description>Sub-Saharan African cities are expanding horizontally, demonstrating spatial patterns of urban sprawl and socioeconomic segregation. An important research gap around the geographies of urban populations is that city-wide analyses mask local socioeconomic inequalities. This research focuses on those inequalities by identifying the spatial settlement patterns of socioeconomic groups within the Greater Kampala Metropolitan Area (Uganda). Findings are based on a novel dataset, an extensive household survey with 541 households, conducted in Kampala in 2019. To identify different socioeconomic groups, a k-prototypes clustering method was applied to the survey data. A maximum likelihood classification method was applied on a recent Landsat-8 image of the city and compared to the socioeconomic clustering through a fuzzy error matrix. The resulting maps show how different socioeconomic clusters are located around the city. We propose a simple method to upscale household survey responses to a larger study area, to use these data as a base map for further analysis or urban planning purposes. Obtaining a better understanding of the spatial variability in socioeconomic dynamics can aid urban policy-makers to target their decision-making processes towards a more favorable and sustainable future.</description><identifier>ISSN: 2072-4292</identifier><identifier>EISSN: 2072-4292</identifier><language>eng</language><publisher>MDPI AG</publisher><ispartof>Remote Sensing, 2020-10, Vol.12 (20)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27839</link.rule.ids></links><search><creatorcontrib>Hemerijckx, Lisa</creatorcontrib><creatorcontrib>Van Emelen, Sam</creatorcontrib><creatorcontrib>Reymenants, Joachim</creatorcontrib><creatorcontrib>Davis, Jac</creatorcontrib><creatorcontrib>Verburg, Peter</creatorcontrib><creatorcontrib>Lwasa, Shuaib</creatorcontrib><creatorcontrib>Van Rompaey, Anton</creatorcontrib><title>Upscaling Household Survey Data Using Remote Sensing to Map Socioeconomic Groups in Kampala, Uganda</title><title>Remote Sensing</title><description>Sub-Saharan African cities are expanding horizontally, demonstrating spatial patterns of urban sprawl and socioeconomic segregation. An important research gap around the geographies of urban populations is that city-wide analyses mask local socioeconomic inequalities. This research focuses on those inequalities by identifying the spatial settlement patterns of socioeconomic groups within the Greater Kampala Metropolitan Area (Uganda). Findings are based on a novel dataset, an extensive household survey with 541 households, conducted in Kampala in 2019. To identify different socioeconomic groups, a k-prototypes clustering method was applied to the survey data. A maximum likelihood classification method was applied on a recent Landsat-8 image of the city and compared to the socioeconomic clustering through a fuzzy error matrix. The resulting maps show how different socioeconomic clusters are located around the city. We propose a simple method to upscale household survey responses to a larger study area, to use these data as a base map for further analysis or urban planning purposes. Obtaining a better understanding of the spatial variability in socioeconomic dynamics can aid urban policy-makers to target their decision-making processes towards a more favorable and sustainable future.</description><issn>2072-4292</issn><issn>2072-4292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNjDFvwjAUhK0KJBDlP7yNoSAldghkbqFIiIU0c_TkPCCt42dhG9F_31IxdOSWu093uicxlMlCzjJZyN6_PBBj7z-TXymVFkk2FLpyXqNp7RE2HD2d2DRQxvOFvuENA0Llb92eOg4EJdk_DAw7dFCybpk0W-5aDe9njs5Da2GLnUODU6iOaBt8Fv0DGk_ju4_EZL36eN3MvqKheCFbN96hpjqVKpvni2VR53laqKUaiZfHlnW4BvX47w95IFXF</recordid><startdate>20201021</startdate><enddate>20201021</enddate><creator>Hemerijckx, Lisa</creator><creator>Van Emelen, Sam</creator><creator>Reymenants, Joachim</creator><creator>Davis, Jac</creator><creator>Verburg, Peter</creator><creator>Lwasa, Shuaib</creator><creator>Van Rompaey, Anton</creator><general>MDPI AG</general><scope>FZOIL</scope></search><sort><creationdate>20201021</creationdate><title>Upscaling Household Survey Data Using Remote Sensing to Map Socioeconomic Groups in Kampala, Uganda</title><author>Hemerijckx, Lisa ; Van Emelen, Sam ; Reymenants, Joachim ; Davis, Jac ; Verburg, Peter ; Lwasa, Shuaib ; Van Rompaey, Anton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6619383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hemerijckx, Lisa</creatorcontrib><creatorcontrib>Van Emelen, Sam</creatorcontrib><creatorcontrib>Reymenants, Joachim</creatorcontrib><creatorcontrib>Davis, Jac</creatorcontrib><creatorcontrib>Verburg, Peter</creatorcontrib><creatorcontrib>Lwasa, Shuaib</creatorcontrib><creatorcontrib>Van Rompaey, Anton</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Remote Sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hemerijckx, Lisa</au><au>Van Emelen, Sam</au><au>Reymenants, Joachim</au><au>Davis, Jac</au><au>Verburg, Peter</au><au>Lwasa, Shuaib</au><au>Van Rompaey, Anton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upscaling Household Survey Data Using Remote Sensing to Map Socioeconomic Groups in Kampala, Uganda</atitle><jtitle>Remote Sensing</jtitle><date>2020-10-21</date><risdate>2020</risdate><volume>12</volume><issue>20</issue><issn>2072-4292</issn><eissn>2072-4292</eissn><abstract>Sub-Saharan African cities are expanding horizontally, demonstrating spatial patterns of urban sprawl and socioeconomic segregation. An important research gap around the geographies of urban populations is that city-wide analyses mask local socioeconomic inequalities. This research focuses on those inequalities by identifying the spatial settlement patterns of socioeconomic groups within the Greater Kampala Metropolitan Area (Uganda). Findings are based on a novel dataset, an extensive household survey with 541 households, conducted in Kampala in 2019. To identify different socioeconomic groups, a k-prototypes clustering method was applied to the survey data. A maximum likelihood classification method was applied on a recent Landsat-8 image of the city and compared to the socioeconomic clustering through a fuzzy error matrix. The resulting maps show how different socioeconomic clusters are located around the city. We propose a simple method to upscale household survey responses to a larger study area, to use these data as a base map for further analysis or urban planning purposes. Obtaining a better understanding of the spatial variability in socioeconomic dynamics can aid urban policy-makers to target their decision-making processes towards a more favorable and sustainable future.</abstract><pub>MDPI AG</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-4292
ispartof Remote Sensing, 2020-10, Vol.12 (20)
issn 2072-4292
2072-4292
language eng
recordid cdi_kuleuven_dspace_123456789_661938
source Lirias (KU Leuven Association); DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
title Upscaling Household Survey Data Using Remote Sensing to Map Socioeconomic Groups in Kampala, Uganda
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A31%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upscaling%20Household%20Survey%20Data%20Using%20Remote%20Sensing%20to%20Map%20Socioeconomic%20Groups%20in%20Kampala,%20Uganda&rft.jtitle=Remote%20Sensing&rft.au=Hemerijckx,%20Lisa&rft.date=2020-10-21&rft.volume=12&rft.issue=20&rft.issn=2072-4292&rft.eissn=2072-4292&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_661938%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true