Highly Conductive and Strong CuSn0.3 Alloy Processed via Laser Powder Bed Fusion Starting from a Tin-coated Copper Powder

Despite the high demand, the successful fabrication of fully dense, highly conductive, and strong copper components via laser powder bed fusion (LPBF) is not readily evident. This is mainly due to the low optical absorption of copper, which inhibits the complete melting of copper powders when using...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Additive Manufacturing 2020-12, Vol.36
Hauptverfasser: Jadhav, Suraj Dinkar, Fu, Dongmei, Deprez, Maxim, Ramharter, Kristof, Willems, Denise, Van Hooreweder, Brecht, Vanmeensel, Kim
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Additive Manufacturing
container_volume 36
creator Jadhav, Suraj Dinkar
Fu, Dongmei
Deprez, Maxim
Ramharter, Kristof
Willems, Denise
Van Hooreweder, Brecht
Vanmeensel, Kim
description Despite the high demand, the successful fabrication of fully dense, highly conductive, and strong copper components via laser powder bed fusion (LPBF) is not readily evident. This is mainly due to the low optical absorption of copper, which inhibits the complete melting of copper powders when using commercially available fiber-laser-based LPBF machines. Accordingly, this article proposes a novel approach of using optically absorptive metal-coated copper powders for the fabrication of fully dense, highly conductive, and strong copper components via LPBF. To validate this approach, the surface of the copper powder is modified by applying a very thin (62 ± 14 nm) layer of metallic tin via an immersion plating technique. The application of only a 0.28 wt% of metallic tin coating significantly improved the room temperature powder optical absorption by ∼170% at the fiber laser wavelength. Consequently, crack-free and fully dense copper parts combining high thermal conductivity of 334 ± 4 W/(m·K) and electrical conductivity of 80 ± 1% international annealed copper standard (%IACS) with a good tensile strength of 256 ± 14 MPa, yield strength of 203 ± 4 MPa, and ductility of 21 ± 2 % have been fabricated using a fiber laser with an output laser power of 500 W. Furthermore, the article also describes the negative influence of the presence of a high amount of (0.091 wt%) sulfur, which originates from the organic additives during sub-optimal coating conditions, on the LPBF processing behavior of CuSn alloys. As such, high sulfur-containing tin-coated copper powders do not allow the fabrication of fully dense parts due to the occurrence of solidification cracks and the formation of pores. Subsequently, the optimum tin coating methodology, which limits the amount of sulfur below 0.0025 wt%, is described. The use of sulfur-free powder is recommended for the successful LPBF processing of fully dense parts made of copper and copper alloys.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_660471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_660471</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6604713</originalsourceid><addsrcrecordid>eNqNj02LwjAURbNwQHH8D2_nQippU9u61DLiwoWg-xKaqNGYV_LRsf9-shhcu7pwOefCHZFJlqV5UhU0H5OZc3dKabpi5brKJmTYq-tND1CjEaH1qpfAjYCTt2iuUIeToUsGG61xgKPFVjonBfSKw4E7aeGIvyLGNpa74BSaqHLrVZQvFp_A4axM0iL3kaix697ON_m6cO3k7D-nZL77Odf75BG0DL00jXAdb2WTZixfFWW1bop4oUzZlCw-Ixv_8uzz3T83PVsJ</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Highly Conductive and Strong CuSn0.3 Alloy Processed via Laser Powder Bed Fusion Starting from a Tin-coated Copper Powder</title><source>Lirias (KU Leuven Association)</source><source>Alma/SFX Local Collection</source><creator>Jadhav, Suraj Dinkar ; Fu, Dongmei ; Deprez, Maxim ; Ramharter, Kristof ; Willems, Denise ; Van Hooreweder, Brecht ; Vanmeensel, Kim</creator><creatorcontrib>Jadhav, Suraj Dinkar ; Fu, Dongmei ; Deprez, Maxim ; Ramharter, Kristof ; Willems, Denise ; Van Hooreweder, Brecht ; Vanmeensel, Kim</creatorcontrib><description>Despite the high demand, the successful fabrication of fully dense, highly conductive, and strong copper components via laser powder bed fusion (LPBF) is not readily evident. This is mainly due to the low optical absorption of copper, which inhibits the complete melting of copper powders when using commercially available fiber-laser-based LPBF machines. Accordingly, this article proposes a novel approach of using optically absorptive metal-coated copper powders for the fabrication of fully dense, highly conductive, and strong copper components via LPBF. To validate this approach, the surface of the copper powder is modified by applying a very thin (62 ± 14 nm) layer of metallic tin via an immersion plating technique. The application of only a 0.28 wt% of metallic tin coating significantly improved the room temperature powder optical absorption by ∼170% at the fiber laser wavelength. Consequently, crack-free and fully dense copper parts combining high thermal conductivity of 334 ± 4 W/(m·K) and electrical conductivity of 80 ± 1% international annealed copper standard (%IACS) with a good tensile strength of 256 ± 14 MPa, yield strength of 203 ± 4 MPa, and ductility of 21 ± 2 % have been fabricated using a fiber laser with an output laser power of 500 W. Furthermore, the article also describes the negative influence of the presence of a high amount of (0.091 wt%) sulfur, which originates from the organic additives during sub-optimal coating conditions, on the LPBF processing behavior of CuSn alloys. As such, high sulfur-containing tin-coated copper powders do not allow the fabrication of fully dense parts due to the occurrence of solidification cracks and the formation of pores. Subsequently, the optimum tin coating methodology, which limits the amount of sulfur below 0.0025 wt%, is described. The use of sulfur-free powder is recommended for the successful LPBF processing of fully dense parts made of copper and copper alloys.</description><identifier>ISSN: 2214-8604</identifier><language>eng</language><publisher>Elsevier</publisher><ispartof>Additive Manufacturing, 2020-12, Vol.36</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,27860</link.rule.ids></links><search><creatorcontrib>Jadhav, Suraj Dinkar</creatorcontrib><creatorcontrib>Fu, Dongmei</creatorcontrib><creatorcontrib>Deprez, Maxim</creatorcontrib><creatorcontrib>Ramharter, Kristof</creatorcontrib><creatorcontrib>Willems, Denise</creatorcontrib><creatorcontrib>Van Hooreweder, Brecht</creatorcontrib><creatorcontrib>Vanmeensel, Kim</creatorcontrib><title>Highly Conductive and Strong CuSn0.3 Alloy Processed via Laser Powder Bed Fusion Starting from a Tin-coated Copper Powder</title><title>Additive Manufacturing</title><description>Despite the high demand, the successful fabrication of fully dense, highly conductive, and strong copper components via laser powder bed fusion (LPBF) is not readily evident. This is mainly due to the low optical absorption of copper, which inhibits the complete melting of copper powders when using commercially available fiber-laser-based LPBF machines. Accordingly, this article proposes a novel approach of using optically absorptive metal-coated copper powders for the fabrication of fully dense, highly conductive, and strong copper components via LPBF. To validate this approach, the surface of the copper powder is modified by applying a very thin (62 ± 14 nm) layer of metallic tin via an immersion plating technique. The application of only a 0.28 wt% of metallic tin coating significantly improved the room temperature powder optical absorption by ∼170% at the fiber laser wavelength. Consequently, crack-free and fully dense copper parts combining high thermal conductivity of 334 ± 4 W/(m·K) and electrical conductivity of 80 ± 1% international annealed copper standard (%IACS) with a good tensile strength of 256 ± 14 MPa, yield strength of 203 ± 4 MPa, and ductility of 21 ± 2 % have been fabricated using a fiber laser with an output laser power of 500 W. Furthermore, the article also describes the negative influence of the presence of a high amount of (0.091 wt%) sulfur, which originates from the organic additives during sub-optimal coating conditions, on the LPBF processing behavior of CuSn alloys. As such, high sulfur-containing tin-coated copper powders do not allow the fabrication of fully dense parts due to the occurrence of solidification cracks and the formation of pores. Subsequently, the optimum tin coating methodology, which limits the amount of sulfur below 0.0025 wt%, is described. The use of sulfur-free powder is recommended for the successful LPBF processing of fully dense parts made of copper and copper alloys.</description><issn>2214-8604</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNj02LwjAURbNwQHH8D2_nQippU9u61DLiwoWg-xKaqNGYV_LRsf9-shhcu7pwOefCHZFJlqV5UhU0H5OZc3dKabpi5brKJmTYq-tND1CjEaH1qpfAjYCTt2iuUIeToUsGG61xgKPFVjonBfSKw4E7aeGIvyLGNpa74BSaqHLrVZQvFp_A4axM0iL3kaix697ON_m6cO3k7D-nZL77Odf75BG0DL00jXAdb2WTZixfFWW1bop4oUzZlCw-Ixv_8uzz3T83PVsJ</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Jadhav, Suraj Dinkar</creator><creator>Fu, Dongmei</creator><creator>Deprez, Maxim</creator><creator>Ramharter, Kristof</creator><creator>Willems, Denise</creator><creator>Van Hooreweder, Brecht</creator><creator>Vanmeensel, Kim</creator><general>Elsevier</general><scope>FZOIL</scope></search><sort><creationdate>202012</creationdate><title>Highly Conductive and Strong CuSn0.3 Alloy Processed via Laser Powder Bed Fusion Starting from a Tin-coated Copper Powder</title><author>Jadhav, Suraj Dinkar ; Fu, Dongmei ; Deprez, Maxim ; Ramharter, Kristof ; Willems, Denise ; Van Hooreweder, Brecht ; Vanmeensel, Kim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6604713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jadhav, Suraj Dinkar</creatorcontrib><creatorcontrib>Fu, Dongmei</creatorcontrib><creatorcontrib>Deprez, Maxim</creatorcontrib><creatorcontrib>Ramharter, Kristof</creatorcontrib><creatorcontrib>Willems, Denise</creatorcontrib><creatorcontrib>Van Hooreweder, Brecht</creatorcontrib><creatorcontrib>Vanmeensel, Kim</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Additive Manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jadhav, Suraj Dinkar</au><au>Fu, Dongmei</au><au>Deprez, Maxim</au><au>Ramharter, Kristof</au><au>Willems, Denise</au><au>Van Hooreweder, Brecht</au><au>Vanmeensel, Kim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Conductive and Strong CuSn0.3 Alloy Processed via Laser Powder Bed Fusion Starting from a Tin-coated Copper Powder</atitle><jtitle>Additive Manufacturing</jtitle><date>2020-12</date><risdate>2020</risdate><volume>36</volume><issn>2214-8604</issn><abstract>Despite the high demand, the successful fabrication of fully dense, highly conductive, and strong copper components via laser powder bed fusion (LPBF) is not readily evident. This is mainly due to the low optical absorption of copper, which inhibits the complete melting of copper powders when using commercially available fiber-laser-based LPBF machines. Accordingly, this article proposes a novel approach of using optically absorptive metal-coated copper powders for the fabrication of fully dense, highly conductive, and strong copper components via LPBF. To validate this approach, the surface of the copper powder is modified by applying a very thin (62 ± 14 nm) layer of metallic tin via an immersion plating technique. The application of only a 0.28 wt% of metallic tin coating significantly improved the room temperature powder optical absorption by ∼170% at the fiber laser wavelength. Consequently, crack-free and fully dense copper parts combining high thermal conductivity of 334 ± 4 W/(m·K) and electrical conductivity of 80 ± 1% international annealed copper standard (%IACS) with a good tensile strength of 256 ± 14 MPa, yield strength of 203 ± 4 MPa, and ductility of 21 ± 2 % have been fabricated using a fiber laser with an output laser power of 500 W. Furthermore, the article also describes the negative influence of the presence of a high amount of (0.091 wt%) sulfur, which originates from the organic additives during sub-optimal coating conditions, on the LPBF processing behavior of CuSn alloys. As such, high sulfur-containing tin-coated copper powders do not allow the fabrication of fully dense parts due to the occurrence of solidification cracks and the formation of pores. Subsequently, the optimum tin coating methodology, which limits the amount of sulfur below 0.0025 wt%, is described. The use of sulfur-free powder is recommended for the successful LPBF processing of fully dense parts made of copper and copper alloys.</abstract><pub>Elsevier</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2214-8604
ispartof Additive Manufacturing, 2020-12, Vol.36
issn 2214-8604
language eng
recordid cdi_kuleuven_dspace_123456789_660471
source Lirias (KU Leuven Association); Alma/SFX Local Collection
title Highly Conductive and Strong CuSn0.3 Alloy Processed via Laser Powder Bed Fusion Starting from a Tin-coated Copper Powder
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Conductive%20and%20Strong%20CuSn0.3%20Alloy%20Processed%20via%20Laser%20Powder%20Bed%20Fusion%20Starting%20from%20a%20Tin-coated%20Copper%20Powder&rft.jtitle=Additive%20Manufacturing&rft.au=Jadhav,%20Suraj%20Dinkar&rft.date=2020-12&rft.volume=36&rft.issn=2214-8604&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_660471%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true