Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study

The purpose of this work is to check if additive manufacturing technologies are suitable for reproducing porous samples designed for sound absorption. The work is an inter-laboratory test, in which the production of samples and their acoustic measurements are carried out independently by different l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Additive Manufacturing 2020-12, Vol.36
Hauptverfasser: Zielinski, Tomasz G, Opiela, Kamil C, Palowski, Piotr, Dauchez, Nicolas, Boutin, Thomas, Kennedy, John, Trimble, Daniel, Rice, Henry, Van Damme, Bart, Hannema, Gwenael, Wróbel, Rafal, Kim, Seok, Ghaffari Mosanenzadeh, Shahrzad, Fang, Nicholas X, Yang, Jieun, Briere de La Hosseraye, Baltazar, Hornikx, Maarten C.J, Salze, Edouard, Galland, Marie-Annick, Boonen, Rene, Carvalho De Sousa, Augusto, Deckers, Elke, Gaborit, Mathieu, Groby, Jean-Philippe
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Additive Manufacturing
container_volume 36
creator Zielinski, Tomasz G
Opiela, Kamil C
Palowski, Piotr
Dauchez, Nicolas
Boutin, Thomas
Kennedy, John
Trimble, Daniel
Rice, Henry
Van Damme, Bart
Hannema, Gwenael
Wróbel, Rafal
Kim, Seok
Ghaffari Mosanenzadeh, Shahrzad
Fang, Nicholas X
Yang, Jieun
Briere de La Hosseraye, Baltazar
Hornikx, Maarten C.J
Salze, Edouard
Galland, Marie-Annick
Boonen, Rene
Carvalho De Sousa, Augusto
Deckers, Elke
Gaborit, Mathieu
Groby, Jean-Philippe
description The purpose of this work is to check if additive manufacturing technologies are suitable for reproducing porous samples designed for sound absorption. The work is an inter-laboratory test, in which the production of samples and their acoustic measurements are carried out independently by different laboratories, sharing only the same geometry codes describing agreed periodic cellular designs. Different additive manufacturing technologies and equipment are used to make samples. Although most of the results obtained from measurements performed on samples with the same cellular design are very close, it is shown that some discrepancies are due to shape and surface imperfections, or microporosity, induced by the manufacturing process. The proposed periodic cellular designs can be easily reproduced and are suitable for further benchmarking of additive manufacturing techniques for rapid prototyping of acoustic materials and metamaterials.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_660137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_660137</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6601373</originalsourceid><addsrcrecordid>eNqVjMFKxDAURbNQcND5h7dzIYW06bQdt6K4HtyXNEnHpzWv5OUN9u9twQ_Q1YVzD-dK7aqqrIuu0fWN2jN_aK3Lg2mPXbVTyynMibw4HHDCvACNwCTRF3ZgSgPGM8whIXl0MFMiYfiyeSV2YhDefus9ZryE9YgyWpclbTgH9x5pojMGfoTTFoVEaxE4i1_u1PW4NsL-d2_V_cvz29Nr8SlTkEuIvefZutCXlakPTdsd-6bRpWnNf8yHv5l9_s7mBydmXrI</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study</title><source>Lirias (KU Leuven Association)</source><source>Alma/SFX Local Collection</source><creator>Zielinski, Tomasz G ; Opiela, Kamil C ; Palowski, Piotr ; Dauchez, Nicolas ; Boutin, Thomas ; Kennedy, John ; Trimble, Daniel ; Rice, Henry ; Van Damme, Bart ; Hannema, Gwenael ; Wróbel, Rafal ; Kim, Seok ; Ghaffari Mosanenzadeh, Shahrzad ; Fang, Nicholas X ; Yang, Jieun ; Briere de La Hosseraye, Baltazar ; Hornikx, Maarten C.J ; Salze, Edouard ; Galland, Marie-Annick ; Boonen, Rene ; Carvalho De Sousa, Augusto ; Deckers, Elke ; Gaborit, Mathieu ; Groby, Jean-Philippe</creator><creatorcontrib>Zielinski, Tomasz G ; Opiela, Kamil C ; Palowski, Piotr ; Dauchez, Nicolas ; Boutin, Thomas ; Kennedy, John ; Trimble, Daniel ; Rice, Henry ; Van Damme, Bart ; Hannema, Gwenael ; Wróbel, Rafal ; Kim, Seok ; Ghaffari Mosanenzadeh, Shahrzad ; Fang, Nicholas X ; Yang, Jieun ; Briere de La Hosseraye, Baltazar ; Hornikx, Maarten C.J ; Salze, Edouard ; Galland, Marie-Annick ; Boonen, Rene ; Carvalho De Sousa, Augusto ; Deckers, Elke ; Gaborit, Mathieu ; Groby, Jean-Philippe</creatorcontrib><description>The purpose of this work is to check if additive manufacturing technologies are suitable for reproducing porous samples designed for sound absorption. The work is an inter-laboratory test, in which the production of samples and their acoustic measurements are carried out independently by different laboratories, sharing only the same geometry codes describing agreed periodic cellular designs. Different additive manufacturing technologies and equipment are used to make samples. Although most of the results obtained from measurements performed on samples with the same cellular design are very close, it is shown that some discrepancies are due to shape and surface imperfections, or microporosity, induced by the manufacturing process. The proposed periodic cellular designs can be easily reproduced and are suitable for further benchmarking of additive manufacturing techniques for rapid prototyping of acoustic materials and metamaterials.</description><identifier>ISSN: 2214-8604</identifier><language>eng</language><publisher>Elsevier</publisher><ispartof>Additive Manufacturing, 2020-12, Vol.36</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27837</link.rule.ids></links><search><creatorcontrib>Zielinski, Tomasz G</creatorcontrib><creatorcontrib>Opiela, Kamil C</creatorcontrib><creatorcontrib>Palowski, Piotr</creatorcontrib><creatorcontrib>Dauchez, Nicolas</creatorcontrib><creatorcontrib>Boutin, Thomas</creatorcontrib><creatorcontrib>Kennedy, John</creatorcontrib><creatorcontrib>Trimble, Daniel</creatorcontrib><creatorcontrib>Rice, Henry</creatorcontrib><creatorcontrib>Van Damme, Bart</creatorcontrib><creatorcontrib>Hannema, Gwenael</creatorcontrib><creatorcontrib>Wróbel, Rafal</creatorcontrib><creatorcontrib>Kim, Seok</creatorcontrib><creatorcontrib>Ghaffari Mosanenzadeh, Shahrzad</creatorcontrib><creatorcontrib>Fang, Nicholas X</creatorcontrib><creatorcontrib>Yang, Jieun</creatorcontrib><creatorcontrib>Briere de La Hosseraye, Baltazar</creatorcontrib><creatorcontrib>Hornikx, Maarten C.J</creatorcontrib><creatorcontrib>Salze, Edouard</creatorcontrib><creatorcontrib>Galland, Marie-Annick</creatorcontrib><creatorcontrib>Boonen, Rene</creatorcontrib><creatorcontrib>Carvalho De Sousa, Augusto</creatorcontrib><creatorcontrib>Deckers, Elke</creatorcontrib><creatorcontrib>Gaborit, Mathieu</creatorcontrib><creatorcontrib>Groby, Jean-Philippe</creatorcontrib><title>Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study</title><title>Additive Manufacturing</title><description>The purpose of this work is to check if additive manufacturing technologies are suitable for reproducing porous samples designed for sound absorption. The work is an inter-laboratory test, in which the production of samples and their acoustic measurements are carried out independently by different laboratories, sharing only the same geometry codes describing agreed periodic cellular designs. Different additive manufacturing technologies and equipment are used to make samples. Although most of the results obtained from measurements performed on samples with the same cellular design are very close, it is shown that some discrepancies are due to shape and surface imperfections, or microporosity, induced by the manufacturing process. The proposed periodic cellular designs can be easily reproduced and are suitable for further benchmarking of additive manufacturing techniques for rapid prototyping of acoustic materials and metamaterials.</description><issn>2214-8604</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVjMFKxDAURbNQcND5h7dzIYW06bQdt6K4HtyXNEnHpzWv5OUN9u9twQ_Q1YVzD-dK7aqqrIuu0fWN2jN_aK3Lg2mPXbVTyynMibw4HHDCvACNwCTRF3ZgSgPGM8whIXl0MFMiYfiyeSV2YhDefus9ZryE9YgyWpclbTgH9x5pojMGfoTTFoVEaxE4i1_u1PW4NsL-d2_V_cvz29Nr8SlTkEuIvefZutCXlakPTdsd-6bRpWnNf8yHv5l9_s7mBydmXrI</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Zielinski, Tomasz G</creator><creator>Opiela, Kamil C</creator><creator>Palowski, Piotr</creator><creator>Dauchez, Nicolas</creator><creator>Boutin, Thomas</creator><creator>Kennedy, John</creator><creator>Trimble, Daniel</creator><creator>Rice, Henry</creator><creator>Van Damme, Bart</creator><creator>Hannema, Gwenael</creator><creator>Wróbel, Rafal</creator><creator>Kim, Seok</creator><creator>Ghaffari Mosanenzadeh, Shahrzad</creator><creator>Fang, Nicholas X</creator><creator>Yang, Jieun</creator><creator>Briere de La Hosseraye, Baltazar</creator><creator>Hornikx, Maarten C.J</creator><creator>Salze, Edouard</creator><creator>Galland, Marie-Annick</creator><creator>Boonen, Rene</creator><creator>Carvalho De Sousa, Augusto</creator><creator>Deckers, Elke</creator><creator>Gaborit, Mathieu</creator><creator>Groby, Jean-Philippe</creator><general>Elsevier</general><scope>FZOIL</scope></search><sort><creationdate>202012</creationdate><title>Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study</title><author>Zielinski, Tomasz G ; Opiela, Kamil C ; Palowski, Piotr ; Dauchez, Nicolas ; Boutin, Thomas ; Kennedy, John ; Trimble, Daniel ; Rice, Henry ; Van Damme, Bart ; Hannema, Gwenael ; Wróbel, Rafal ; Kim, Seok ; Ghaffari Mosanenzadeh, Shahrzad ; Fang, Nicholas X ; Yang, Jieun ; Briere de La Hosseraye, Baltazar ; Hornikx, Maarten C.J ; Salze, Edouard ; Galland, Marie-Annick ; Boonen, Rene ; Carvalho De Sousa, Augusto ; Deckers, Elke ; Gaborit, Mathieu ; Groby, Jean-Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6601373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zielinski, Tomasz G</creatorcontrib><creatorcontrib>Opiela, Kamil C</creatorcontrib><creatorcontrib>Palowski, Piotr</creatorcontrib><creatorcontrib>Dauchez, Nicolas</creatorcontrib><creatorcontrib>Boutin, Thomas</creatorcontrib><creatorcontrib>Kennedy, John</creatorcontrib><creatorcontrib>Trimble, Daniel</creatorcontrib><creatorcontrib>Rice, Henry</creatorcontrib><creatorcontrib>Van Damme, Bart</creatorcontrib><creatorcontrib>Hannema, Gwenael</creatorcontrib><creatorcontrib>Wróbel, Rafal</creatorcontrib><creatorcontrib>Kim, Seok</creatorcontrib><creatorcontrib>Ghaffari Mosanenzadeh, Shahrzad</creatorcontrib><creatorcontrib>Fang, Nicholas X</creatorcontrib><creatorcontrib>Yang, Jieun</creatorcontrib><creatorcontrib>Briere de La Hosseraye, Baltazar</creatorcontrib><creatorcontrib>Hornikx, Maarten C.J</creatorcontrib><creatorcontrib>Salze, Edouard</creatorcontrib><creatorcontrib>Galland, Marie-Annick</creatorcontrib><creatorcontrib>Boonen, Rene</creatorcontrib><creatorcontrib>Carvalho De Sousa, Augusto</creatorcontrib><creatorcontrib>Deckers, Elke</creatorcontrib><creatorcontrib>Gaborit, Mathieu</creatorcontrib><creatorcontrib>Groby, Jean-Philippe</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Additive Manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zielinski, Tomasz G</au><au>Opiela, Kamil C</au><au>Palowski, Piotr</au><au>Dauchez, Nicolas</au><au>Boutin, Thomas</au><au>Kennedy, John</au><au>Trimble, Daniel</au><au>Rice, Henry</au><au>Van Damme, Bart</au><au>Hannema, Gwenael</au><au>Wróbel, Rafal</au><au>Kim, Seok</au><au>Ghaffari Mosanenzadeh, Shahrzad</au><au>Fang, Nicholas X</au><au>Yang, Jieun</au><au>Briere de La Hosseraye, Baltazar</au><au>Hornikx, Maarten C.J</au><au>Salze, Edouard</au><au>Galland, Marie-Annick</au><au>Boonen, Rene</au><au>Carvalho De Sousa, Augusto</au><au>Deckers, Elke</au><au>Gaborit, Mathieu</au><au>Groby, Jean-Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study</atitle><jtitle>Additive Manufacturing</jtitle><date>2020-12</date><risdate>2020</risdate><volume>36</volume><issn>2214-8604</issn><abstract>The purpose of this work is to check if additive manufacturing technologies are suitable for reproducing porous samples designed for sound absorption. The work is an inter-laboratory test, in which the production of samples and their acoustic measurements are carried out independently by different laboratories, sharing only the same geometry codes describing agreed periodic cellular designs. Different additive manufacturing technologies and equipment are used to make samples. Although most of the results obtained from measurements performed on samples with the same cellular design are very close, it is shown that some discrepancies are due to shape and surface imperfections, or microporosity, induced by the manufacturing process. The proposed periodic cellular designs can be easily reproduced and are suitable for further benchmarking of additive manufacturing techniques for rapid prototyping of acoustic materials and metamaterials.</abstract><pub>Elsevier</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2214-8604
ispartof Additive Manufacturing, 2020-12, Vol.36
issn 2214-8604
language eng
recordid cdi_kuleuven_dspace_123456789_660137
source Lirias (KU Leuven Association); Alma/SFX Local Collection
title Reproducibility of sound-absorbing periodic porous materials using additive manufacturing technologies: Round robin study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A49%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reproducibility%20of%20sound-absorbing%20periodic%20porous%20materials%20using%20additive%20manufacturing%20technologies:%20Round%20robin%20study&rft.jtitle=Additive%20Manufacturing&rft.au=Zielinski,%20Tomasz%20G&rft.date=2020-12&rft.volume=36&rft.issn=2214-8604&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_660137%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true