Synchronization in reaction-diffusion systems with multiple pacemakers
Spatially extended oscillatory systems can be entrained by pacemakers, regions that oscillate with a higher frequency than the rest of the medium. Entrainment happens through waves originating at a pacemaker. Typically, biological and chemical media can contain multiple pacemaker regions, which comp...
Gespeichert in:
Veröffentlicht in: | Chaos 2020-05, Vol.30 (5) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Chaos |
container_volume | 30 |
creator | Nolet, Felix Eduard Rombouts, Jan Gelens, Lendert |
description | Spatially extended oscillatory systems can be entrained by pacemakers, regions that oscillate with a higher frequency than the rest of the medium. Entrainment happens through waves originating at a pacemaker. Typically, biological and chemical media can contain multiple pacemaker regions, which compete with each other. In this paper, we perform a detailed numerical analysis of how wave propagation and synchronization of the medium depend on the properties of these pacemakers. We discuss the influence of the size and intrinsic frequency of pacemakers on the synchronization properties. We also study a system in which the pacemakers are embedded in a medium without any local dynamics. In this case, synchronization occurs if the coupling determined by the distance and diffusion is strong enough. The transition to synchronization is reminiscent of systems of discrete coupled oscillators. |
format | Article |
fullrecord | <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_655245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_655245</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6552453</originalsourceid><addsrcrecordid>eNqNjcsOgjAURLvQRET_oTsXhqQ8iro2Eve6b5pyCZVSCLdV8euVxA9gNSeTk5kFCWLGsyjmjK3IGvHBGIuTlAekuI1W1UNn9Uc63VmqLR1AqomjUleVx6nFER20SF_a1bT1xuneAO2lglY2MOCGLCtpELb_DMmuuNzP16jxBvwTrChxssXvNeP54XgSOedJxtOQ7OeZwr1dOn_3C-y7SpE</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synchronization in reaction-diffusion systems with multiple pacemakers</title><source>Lirias (KU Leuven Association)</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Nolet, Felix Eduard ; Rombouts, Jan ; Gelens, Lendert</creator><creatorcontrib>Nolet, Felix Eduard ; Rombouts, Jan ; Gelens, Lendert</creatorcontrib><description>Spatially extended oscillatory systems can be entrained by pacemakers, regions that oscillate with a higher frequency than the rest of the medium. Entrainment happens through waves originating at a pacemaker. Typically, biological and chemical media can contain multiple pacemaker regions, which compete with each other. In this paper, we perform a detailed numerical analysis of how wave propagation and synchronization of the medium depend on the properties of these pacemakers. We discuss the influence of the size and intrinsic frequency of pacemakers on the synchronization properties. We also study a system in which the pacemakers are embedded in a medium without any local dynamics. In this case, synchronization occurs if the coupling determined by the distance and diffusion is strong enough. The transition to synchronization is reminiscent of systems of discrete coupled oscillators.</description><identifier>ISSN: 1054-1500</identifier><language>eng</language><publisher>AIP Publishing</publisher><ispartof>Chaos, 2020-05, Vol.30 (5)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,27860</link.rule.ids></links><search><creatorcontrib>Nolet, Felix Eduard</creatorcontrib><creatorcontrib>Rombouts, Jan</creatorcontrib><creatorcontrib>Gelens, Lendert</creatorcontrib><title>Synchronization in reaction-diffusion systems with multiple pacemakers</title><title>Chaos</title><description>Spatially extended oscillatory systems can be entrained by pacemakers, regions that oscillate with a higher frequency than the rest of the medium. Entrainment happens through waves originating at a pacemaker. Typically, biological and chemical media can contain multiple pacemaker regions, which compete with each other. In this paper, we perform a detailed numerical analysis of how wave propagation and synchronization of the medium depend on the properties of these pacemakers. We discuss the influence of the size and intrinsic frequency of pacemakers on the synchronization properties. We also study a system in which the pacemakers are embedded in a medium without any local dynamics. In this case, synchronization occurs if the coupling determined by the distance and diffusion is strong enough. The transition to synchronization is reminiscent of systems of discrete coupled oscillators.</description><issn>1054-1500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNjcsOgjAURLvQRET_oTsXhqQ8iro2Eve6b5pyCZVSCLdV8euVxA9gNSeTk5kFCWLGsyjmjK3IGvHBGIuTlAekuI1W1UNn9Uc63VmqLR1AqomjUleVx6nFER20SF_a1bT1xuneAO2lglY2MOCGLCtpELb_DMmuuNzP16jxBvwTrChxssXvNeP54XgSOedJxtOQ7OeZwr1dOn_3C-y7SpE</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Nolet, Felix Eduard</creator><creator>Rombouts, Jan</creator><creator>Gelens, Lendert</creator><general>AIP Publishing</general><scope>FZOIL</scope></search><sort><creationdate>202005</creationdate><title>Synchronization in reaction-diffusion systems with multiple pacemakers</title><author>Nolet, Felix Eduard ; Rombouts, Jan ; Gelens, Lendert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6552453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nolet, Felix Eduard</creatorcontrib><creatorcontrib>Rombouts, Jan</creatorcontrib><creatorcontrib>Gelens, Lendert</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Chaos</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nolet, Felix Eduard</au><au>Rombouts, Jan</au><au>Gelens, Lendert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronization in reaction-diffusion systems with multiple pacemakers</atitle><jtitle>Chaos</jtitle><date>2020-05</date><risdate>2020</risdate><volume>30</volume><issue>5</issue><issn>1054-1500</issn><abstract>Spatially extended oscillatory systems can be entrained by pacemakers, regions that oscillate with a higher frequency than the rest of the medium. Entrainment happens through waves originating at a pacemaker. Typically, biological and chemical media can contain multiple pacemaker regions, which compete with each other. In this paper, we perform a detailed numerical analysis of how wave propagation and synchronization of the medium depend on the properties of these pacemakers. We discuss the influence of the size and intrinsic frequency of pacemakers on the synchronization properties. We also study a system in which the pacemakers are embedded in a medium without any local dynamics. In this case, synchronization occurs if the coupling determined by the distance and diffusion is strong enough. The transition to synchronization is reminiscent of systems of discrete coupled oscillators.</abstract><pub>AIP Publishing</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-1500 |
ispartof | Chaos, 2020-05, Vol.30 (5) |
issn | 1054-1500 |
language | eng |
recordid | cdi_kuleuven_dspace_123456789_655245 |
source | Lirias (KU Leuven Association); AIP Journals Complete; Alma/SFX Local Collection |
title | Synchronization in reaction-diffusion systems with multiple pacemakers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronization%20in%20reaction-diffusion%20systems%20with%20multiple%20pacemakers&rft.jtitle=Chaos&rft.au=Nolet,%20Felix%20Eduard&rft.date=2020-05&rft.volume=30&rft.issue=5&rft.issn=1054-1500&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_655245%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |