Synchronization in reaction-diffusion systems with multiple pacemakers

Spatially extended oscillatory systems can be entrained by pacemakers, regions that oscillate with a higher frequency than the rest of the medium. Entrainment happens through waves originating at a pacemaker. Typically, biological and chemical media can contain multiple pacemaker regions, which comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos 2020-05, Vol.30 (5)
Hauptverfasser: Nolet, Felix Eduard, Rombouts, Jan, Gelens, Lendert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Chaos
container_volume 30
creator Nolet, Felix Eduard
Rombouts, Jan
Gelens, Lendert
description Spatially extended oscillatory systems can be entrained by pacemakers, regions that oscillate with a higher frequency than the rest of the medium. Entrainment happens through waves originating at a pacemaker. Typically, biological and chemical media can contain multiple pacemaker regions, which compete with each other. In this paper, we perform a detailed numerical analysis of how wave propagation and synchronization of the medium depend on the properties of these pacemakers. We discuss the influence of the size and intrinsic frequency of pacemakers on the synchronization properties. We also study a system in which the pacemakers are embedded in a medium without any local dynamics. In this case, synchronization occurs if the coupling determined by the distance and diffusion is strong enough. The transition to synchronization is reminiscent of systems of discrete coupled oscillators.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_655245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_655245</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6552453</originalsourceid><addsrcrecordid>eNqNjcsOgjAURLvQRET_oTsXhqQ8iro2Eve6b5pyCZVSCLdV8euVxA9gNSeTk5kFCWLGsyjmjK3IGvHBGIuTlAekuI1W1UNn9Uc63VmqLR1AqomjUleVx6nFER20SF_a1bT1xuneAO2lglY2MOCGLCtpELb_DMmuuNzP16jxBvwTrChxssXvNeP54XgSOedJxtOQ7OeZwr1dOn_3C-y7SpE</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Synchronization in reaction-diffusion systems with multiple pacemakers</title><source>Lirias (KU Leuven Association)</source><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Nolet, Felix Eduard ; Rombouts, Jan ; Gelens, Lendert</creator><creatorcontrib>Nolet, Felix Eduard ; Rombouts, Jan ; Gelens, Lendert</creatorcontrib><description>Spatially extended oscillatory systems can be entrained by pacemakers, regions that oscillate with a higher frequency than the rest of the medium. Entrainment happens through waves originating at a pacemaker. Typically, biological and chemical media can contain multiple pacemaker regions, which compete with each other. In this paper, we perform a detailed numerical analysis of how wave propagation and synchronization of the medium depend on the properties of these pacemakers. We discuss the influence of the size and intrinsic frequency of pacemakers on the synchronization properties. We also study a system in which the pacemakers are embedded in a medium without any local dynamics. In this case, synchronization occurs if the coupling determined by the distance and diffusion is strong enough. The transition to synchronization is reminiscent of systems of discrete coupled oscillators.</description><identifier>ISSN: 1054-1500</identifier><language>eng</language><publisher>AIP Publishing</publisher><ispartof>Chaos, 2020-05, Vol.30 (5)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,27860</link.rule.ids></links><search><creatorcontrib>Nolet, Felix Eduard</creatorcontrib><creatorcontrib>Rombouts, Jan</creatorcontrib><creatorcontrib>Gelens, Lendert</creatorcontrib><title>Synchronization in reaction-diffusion systems with multiple pacemakers</title><title>Chaos</title><description>Spatially extended oscillatory systems can be entrained by pacemakers, regions that oscillate with a higher frequency than the rest of the medium. Entrainment happens through waves originating at a pacemaker. Typically, biological and chemical media can contain multiple pacemaker regions, which compete with each other. In this paper, we perform a detailed numerical analysis of how wave propagation and synchronization of the medium depend on the properties of these pacemakers. We discuss the influence of the size and intrinsic frequency of pacemakers on the synchronization properties. We also study a system in which the pacemakers are embedded in a medium without any local dynamics. In this case, synchronization occurs if the coupling determined by the distance and diffusion is strong enough. The transition to synchronization is reminiscent of systems of discrete coupled oscillators.</description><issn>1054-1500</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNjcsOgjAURLvQRET_oTsXhqQ8iro2Eve6b5pyCZVSCLdV8euVxA9gNSeTk5kFCWLGsyjmjK3IGvHBGIuTlAekuI1W1UNn9Uc63VmqLR1AqomjUleVx6nFER20SF_a1bT1xuneAO2lglY2MOCGLCtpELb_DMmuuNzP16jxBvwTrChxssXvNeP54XgSOedJxtOQ7OeZwr1dOn_3C-y7SpE</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Nolet, Felix Eduard</creator><creator>Rombouts, Jan</creator><creator>Gelens, Lendert</creator><general>AIP Publishing</general><scope>FZOIL</scope></search><sort><creationdate>202005</creationdate><title>Synchronization in reaction-diffusion systems with multiple pacemakers</title><author>Nolet, Felix Eduard ; Rombouts, Jan ; Gelens, Lendert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6552453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nolet, Felix Eduard</creatorcontrib><creatorcontrib>Rombouts, Jan</creatorcontrib><creatorcontrib>Gelens, Lendert</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Chaos</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nolet, Felix Eduard</au><au>Rombouts, Jan</au><au>Gelens, Lendert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synchronization in reaction-diffusion systems with multiple pacemakers</atitle><jtitle>Chaos</jtitle><date>2020-05</date><risdate>2020</risdate><volume>30</volume><issue>5</issue><issn>1054-1500</issn><abstract>Spatially extended oscillatory systems can be entrained by pacemakers, regions that oscillate with a higher frequency than the rest of the medium. Entrainment happens through waves originating at a pacemaker. Typically, biological and chemical media can contain multiple pacemaker regions, which compete with each other. In this paper, we perform a detailed numerical analysis of how wave propagation and synchronization of the medium depend on the properties of these pacemakers. We discuss the influence of the size and intrinsic frequency of pacemakers on the synchronization properties. We also study a system in which the pacemakers are embedded in a medium without any local dynamics. In this case, synchronization occurs if the coupling determined by the distance and diffusion is strong enough. The transition to synchronization is reminiscent of systems of discrete coupled oscillators.</abstract><pub>AIP Publishing</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos, 2020-05, Vol.30 (5)
issn 1054-1500
language eng
recordid cdi_kuleuven_dspace_123456789_655245
source Lirias (KU Leuven Association); AIP Journals Complete; Alma/SFX Local Collection
title Synchronization in reaction-diffusion systems with multiple pacemakers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synchronization%20in%20reaction-diffusion%20systems%20with%20multiple%20pacemakers&rft.jtitle=Chaos&rft.au=Nolet,%20Felix%20Eduard&rft.date=2020-05&rft.volume=30&rft.issue=5&rft.issn=1054-1500&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_655245%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true