Assessing computational predictions of the phenotypic effect of cystathionine-beta-synthase variants

Accurate prediction of the impact of genomic variation on phenotype is a major goal of computational biology and an important contributor to personalized medicine. Computational predictions can lead to a better understanding of the mechanisms underlying genetic diseases, including cancer, but their...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:HUMAN MUTATION 2019-09, Vol.40 (9), p.1530-1545
Hauptverfasser: Kasak, Laura, Bakolitsa, Constantina, Hu, Zhiqiang, Yu, Changhua, Rine, Jasper, Dimster-Denk, Dago F, Pandey, Gaurav, De Baets, Greet, Bromberg, Yana, Cao, Chen, Capriotti, Emidio, Casadio, Rita, Van Durme, Joost, Giollo, Manuel, Karchin, Rachel, Katsonis, Panagiotis, Leonardi, Emanuela, Lichtarge, Olivier, Martelli, Pier Luigi, Masica, David, Mooney, Sean D, Olatubosun, Ayodeji, Radivojac, Predrag, Rousseau, Frederic, Pal, Lipika R, Savojardo, Castrense, Schymkowitz, Joost, Thusberg, Janita, Tosatto, Silvio C.E, Vihinen, Mauno, Valiaho, Jouni, Repo, Susanna, Moult, John, Brenner, Steven E, Friedberg, Iddo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1545
container_issue 9
container_start_page 1530
container_title HUMAN MUTATION
container_volume 40
creator Kasak, Laura
Bakolitsa, Constantina
Hu, Zhiqiang
Yu, Changhua
Rine, Jasper
Dimster-Denk, Dago F
Pandey, Gaurav
De Baets, Greet
Bromberg, Yana
Cao, Chen
Capriotti, Emidio
Casadio, Rita
Van Durme, Joost
Giollo, Manuel
Karchin, Rachel
Katsonis, Panagiotis
Leonardi, Emanuela
Lichtarge, Olivier
Martelli, Pier Luigi
Masica, David
Mooney, Sean D
Olatubosun, Ayodeji
Radivojac, Predrag
Rousseau, Frederic
Pal, Lipika R
Savojardo, Castrense
Schymkowitz, Joost
Thusberg, Janita
Tosatto, Silvio C.E
Vihinen, Mauno
Valiaho, Jouni
Repo, Susanna
Moult, John
Brenner, Steven E
Friedberg, Iddo
description Accurate prediction of the impact of genomic variation on phenotype is a major goal of computational biology and an important contributor to personalized medicine. Computational predictions can lead to a better understanding of the mechanisms underlying genetic diseases, including cancer, but their adoption requires thorough and unbiased assessment. Cystathionine-beta-synthase (CBS) is an enzyme that catalyzes the first step of the transsulfuration pathway, from homocysteine to cystathionine, and in which variations are associated with human hyperhomocysteinemia and homocystinuria. We have created a computational challenge under the CAGI framework to evaluate how well different methods can predict the phenotypic effect(s) of CBS single amino acid substitutions using a blinded experimental data set. CAGI participants were asked to predict yeast growth based on the identity of the mutations. The performance of the methods was evaluated using several metrics. The CBS challenge highlighted the difficulty of predicting the phenotype of an ex vivo system in a model organism when classification models were trained on human disease data. We also discuss the variations in difficulty of prediction for known benign and deleterious variants, as well as identify methodological and experimental constraints with lessons to be learned for future challenges.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_647909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_647909</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6479093</originalsourceid><addsrcrecordid>eNqVy00OgjAUBOAuNBF_7tCdC0NS5LdLYzQewD2p5SFVLA3vQeT2QuIBdDWZzDcz5gUiln6aymjBlogPIUQWx6HHigMiIBp757p5uY4UmcaqmrsWCqOngrwpOVXAXQW2ocEZzaEsQdM06AHHTzU6Y8G_ASkfB0uVQuC9ao2yhGs2L1WNsPnmim3Pp-vx4j-7GroebF6gUxryYB9GcZJmMk-iVAoZ_iN3v8mc3hR-APUpVjs</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Assessing computational predictions of the phenotypic effect of cystathionine-beta-synthase variants</title><source>Lirias (KU Leuven Association)</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kasak, Laura ; Bakolitsa, Constantina ; Hu, Zhiqiang ; Yu, Changhua ; Rine, Jasper ; Dimster-Denk, Dago F ; Pandey, Gaurav ; De Baets, Greet ; Bromberg, Yana ; Cao, Chen ; Capriotti, Emidio ; Casadio, Rita ; Van Durme, Joost ; Giollo, Manuel ; Karchin, Rachel ; Katsonis, Panagiotis ; Leonardi, Emanuela ; Lichtarge, Olivier ; Martelli, Pier Luigi ; Masica, David ; Mooney, Sean D ; Olatubosun, Ayodeji ; Radivojac, Predrag ; Rousseau, Frederic ; Pal, Lipika R ; Savojardo, Castrense ; Schymkowitz, Joost ; Thusberg, Janita ; Tosatto, Silvio C.E ; Vihinen, Mauno ; Valiaho, Jouni ; Repo, Susanna ; Moult, John ; Brenner, Steven E ; Friedberg, Iddo</creator><creatorcontrib>Kasak, Laura ; Bakolitsa, Constantina ; Hu, Zhiqiang ; Yu, Changhua ; Rine, Jasper ; Dimster-Denk, Dago F ; Pandey, Gaurav ; De Baets, Greet ; Bromberg, Yana ; Cao, Chen ; Capriotti, Emidio ; Casadio, Rita ; Van Durme, Joost ; Giollo, Manuel ; Karchin, Rachel ; Katsonis, Panagiotis ; Leonardi, Emanuela ; Lichtarge, Olivier ; Martelli, Pier Luigi ; Masica, David ; Mooney, Sean D ; Olatubosun, Ayodeji ; Radivojac, Predrag ; Rousseau, Frederic ; Pal, Lipika R ; Savojardo, Castrense ; Schymkowitz, Joost ; Thusberg, Janita ; Tosatto, Silvio C.E ; Vihinen, Mauno ; Valiaho, Jouni ; Repo, Susanna ; Moult, John ; Brenner, Steven E ; Friedberg, Iddo</creatorcontrib><description>Accurate prediction of the impact of genomic variation on phenotype is a major goal of computational biology and an important contributor to personalized medicine. Computational predictions can lead to a better understanding of the mechanisms underlying genetic diseases, including cancer, but their adoption requires thorough and unbiased assessment. Cystathionine-beta-synthase (CBS) is an enzyme that catalyzes the first step of the transsulfuration pathway, from homocysteine to cystathionine, and in which variations are associated with human hyperhomocysteinemia and homocystinuria. We have created a computational challenge under the CAGI framework to evaluate how well different methods can predict the phenotypic effect(s) of CBS single amino acid substitutions using a blinded experimental data set. CAGI participants were asked to predict yeast growth based on the identity of the mutations. The performance of the methods was evaluated using several metrics. The CBS challenge highlighted the difficulty of predicting the phenotype of an ex vivo system in a model organism when classification models were trained on human disease data. We also discuss the variations in difficulty of prediction for known benign and deleterious variants, as well as identify methodological and experimental constraints with lessons to be learned for future challenges.</description><identifier>ISSN: 1059-7794</identifier><language>eng</language><publisher>WILEY</publisher><ispartof>HUMAN MUTATION, 2019-09, Vol.40 (9), p.1530-1545</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27837</link.rule.ids></links><search><creatorcontrib>Kasak, Laura</creatorcontrib><creatorcontrib>Bakolitsa, Constantina</creatorcontrib><creatorcontrib>Hu, Zhiqiang</creatorcontrib><creatorcontrib>Yu, Changhua</creatorcontrib><creatorcontrib>Rine, Jasper</creatorcontrib><creatorcontrib>Dimster-Denk, Dago F</creatorcontrib><creatorcontrib>Pandey, Gaurav</creatorcontrib><creatorcontrib>De Baets, Greet</creatorcontrib><creatorcontrib>Bromberg, Yana</creatorcontrib><creatorcontrib>Cao, Chen</creatorcontrib><creatorcontrib>Capriotti, Emidio</creatorcontrib><creatorcontrib>Casadio, Rita</creatorcontrib><creatorcontrib>Van Durme, Joost</creatorcontrib><creatorcontrib>Giollo, Manuel</creatorcontrib><creatorcontrib>Karchin, Rachel</creatorcontrib><creatorcontrib>Katsonis, Panagiotis</creatorcontrib><creatorcontrib>Leonardi, Emanuela</creatorcontrib><creatorcontrib>Lichtarge, Olivier</creatorcontrib><creatorcontrib>Martelli, Pier Luigi</creatorcontrib><creatorcontrib>Masica, David</creatorcontrib><creatorcontrib>Mooney, Sean D</creatorcontrib><creatorcontrib>Olatubosun, Ayodeji</creatorcontrib><creatorcontrib>Radivojac, Predrag</creatorcontrib><creatorcontrib>Rousseau, Frederic</creatorcontrib><creatorcontrib>Pal, Lipika R</creatorcontrib><creatorcontrib>Savojardo, Castrense</creatorcontrib><creatorcontrib>Schymkowitz, Joost</creatorcontrib><creatorcontrib>Thusberg, Janita</creatorcontrib><creatorcontrib>Tosatto, Silvio C.E</creatorcontrib><creatorcontrib>Vihinen, Mauno</creatorcontrib><creatorcontrib>Valiaho, Jouni</creatorcontrib><creatorcontrib>Repo, Susanna</creatorcontrib><creatorcontrib>Moult, John</creatorcontrib><creatorcontrib>Brenner, Steven E</creatorcontrib><creatorcontrib>Friedberg, Iddo</creatorcontrib><title>Assessing computational predictions of the phenotypic effect of cystathionine-beta-synthase variants</title><title>HUMAN MUTATION</title><description>Accurate prediction of the impact of genomic variation on phenotype is a major goal of computational biology and an important contributor to personalized medicine. Computational predictions can lead to a better understanding of the mechanisms underlying genetic diseases, including cancer, but their adoption requires thorough and unbiased assessment. Cystathionine-beta-synthase (CBS) is an enzyme that catalyzes the first step of the transsulfuration pathway, from homocysteine to cystathionine, and in which variations are associated with human hyperhomocysteinemia and homocystinuria. We have created a computational challenge under the CAGI framework to evaluate how well different methods can predict the phenotypic effect(s) of CBS single amino acid substitutions using a blinded experimental data set. CAGI participants were asked to predict yeast growth based on the identity of the mutations. The performance of the methods was evaluated using several metrics. The CBS challenge highlighted the difficulty of predicting the phenotype of an ex vivo system in a model organism when classification models were trained on human disease data. We also discuss the variations in difficulty of prediction for known benign and deleterious variants, as well as identify methodological and experimental constraints with lessons to be learned for future challenges.</description><issn>1059-7794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVy00OgjAUBOAuNBF_7tCdC0NS5LdLYzQewD2p5SFVLA3vQeT2QuIBdDWZzDcz5gUiln6aymjBlogPIUQWx6HHigMiIBp757p5uY4UmcaqmrsWCqOngrwpOVXAXQW2ocEZzaEsQdM06AHHTzU6Y8G_ASkfB0uVQuC9ao2yhGs2L1WNsPnmim3Pp-vx4j-7GroebF6gUxryYB9GcZJmMk-iVAoZ_iN3v8mc3hR-APUpVjs</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Kasak, Laura</creator><creator>Bakolitsa, Constantina</creator><creator>Hu, Zhiqiang</creator><creator>Yu, Changhua</creator><creator>Rine, Jasper</creator><creator>Dimster-Denk, Dago F</creator><creator>Pandey, Gaurav</creator><creator>De Baets, Greet</creator><creator>Bromberg, Yana</creator><creator>Cao, Chen</creator><creator>Capriotti, Emidio</creator><creator>Casadio, Rita</creator><creator>Van Durme, Joost</creator><creator>Giollo, Manuel</creator><creator>Karchin, Rachel</creator><creator>Katsonis, Panagiotis</creator><creator>Leonardi, Emanuela</creator><creator>Lichtarge, Olivier</creator><creator>Martelli, Pier Luigi</creator><creator>Masica, David</creator><creator>Mooney, Sean D</creator><creator>Olatubosun, Ayodeji</creator><creator>Radivojac, Predrag</creator><creator>Rousseau, Frederic</creator><creator>Pal, Lipika R</creator><creator>Savojardo, Castrense</creator><creator>Schymkowitz, Joost</creator><creator>Thusberg, Janita</creator><creator>Tosatto, Silvio C.E</creator><creator>Vihinen, Mauno</creator><creator>Valiaho, Jouni</creator><creator>Repo, Susanna</creator><creator>Moult, John</creator><creator>Brenner, Steven E</creator><creator>Friedberg, Iddo</creator><general>WILEY</general><scope>FZOIL</scope></search><sort><creationdate>201909</creationdate><title>Assessing computational predictions of the phenotypic effect of cystathionine-beta-synthase variants</title><author>Kasak, Laura ; Bakolitsa, Constantina ; Hu, Zhiqiang ; Yu, Changhua ; Rine, Jasper ; Dimster-Denk, Dago F ; Pandey, Gaurav ; De Baets, Greet ; Bromberg, Yana ; Cao, Chen ; Capriotti, Emidio ; Casadio, Rita ; Van Durme, Joost ; Giollo, Manuel ; Karchin, Rachel ; Katsonis, Panagiotis ; Leonardi, Emanuela ; Lichtarge, Olivier ; Martelli, Pier Luigi ; Masica, David ; Mooney, Sean D ; Olatubosun, Ayodeji ; Radivojac, Predrag ; Rousseau, Frederic ; Pal, Lipika R ; Savojardo, Castrense ; Schymkowitz, Joost ; Thusberg, Janita ; Tosatto, Silvio C.E ; Vihinen, Mauno ; Valiaho, Jouni ; Repo, Susanna ; Moult, John ; Brenner, Steven E ; Friedberg, Iddo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6479093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kasak, Laura</creatorcontrib><creatorcontrib>Bakolitsa, Constantina</creatorcontrib><creatorcontrib>Hu, Zhiqiang</creatorcontrib><creatorcontrib>Yu, Changhua</creatorcontrib><creatorcontrib>Rine, Jasper</creatorcontrib><creatorcontrib>Dimster-Denk, Dago F</creatorcontrib><creatorcontrib>Pandey, Gaurav</creatorcontrib><creatorcontrib>De Baets, Greet</creatorcontrib><creatorcontrib>Bromberg, Yana</creatorcontrib><creatorcontrib>Cao, Chen</creatorcontrib><creatorcontrib>Capriotti, Emidio</creatorcontrib><creatorcontrib>Casadio, Rita</creatorcontrib><creatorcontrib>Van Durme, Joost</creatorcontrib><creatorcontrib>Giollo, Manuel</creatorcontrib><creatorcontrib>Karchin, Rachel</creatorcontrib><creatorcontrib>Katsonis, Panagiotis</creatorcontrib><creatorcontrib>Leonardi, Emanuela</creatorcontrib><creatorcontrib>Lichtarge, Olivier</creatorcontrib><creatorcontrib>Martelli, Pier Luigi</creatorcontrib><creatorcontrib>Masica, David</creatorcontrib><creatorcontrib>Mooney, Sean D</creatorcontrib><creatorcontrib>Olatubosun, Ayodeji</creatorcontrib><creatorcontrib>Radivojac, Predrag</creatorcontrib><creatorcontrib>Rousseau, Frederic</creatorcontrib><creatorcontrib>Pal, Lipika R</creatorcontrib><creatorcontrib>Savojardo, Castrense</creatorcontrib><creatorcontrib>Schymkowitz, Joost</creatorcontrib><creatorcontrib>Thusberg, Janita</creatorcontrib><creatorcontrib>Tosatto, Silvio C.E</creatorcontrib><creatorcontrib>Vihinen, Mauno</creatorcontrib><creatorcontrib>Valiaho, Jouni</creatorcontrib><creatorcontrib>Repo, Susanna</creatorcontrib><creatorcontrib>Moult, John</creatorcontrib><creatorcontrib>Brenner, Steven E</creatorcontrib><creatorcontrib>Friedberg, Iddo</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>HUMAN MUTATION</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kasak, Laura</au><au>Bakolitsa, Constantina</au><au>Hu, Zhiqiang</au><au>Yu, Changhua</au><au>Rine, Jasper</au><au>Dimster-Denk, Dago F</au><au>Pandey, Gaurav</au><au>De Baets, Greet</au><au>Bromberg, Yana</au><au>Cao, Chen</au><au>Capriotti, Emidio</au><au>Casadio, Rita</au><au>Van Durme, Joost</au><au>Giollo, Manuel</au><au>Karchin, Rachel</au><au>Katsonis, Panagiotis</au><au>Leonardi, Emanuela</au><au>Lichtarge, Olivier</au><au>Martelli, Pier Luigi</au><au>Masica, David</au><au>Mooney, Sean D</au><au>Olatubosun, Ayodeji</au><au>Radivojac, Predrag</au><au>Rousseau, Frederic</au><au>Pal, Lipika R</au><au>Savojardo, Castrense</au><au>Schymkowitz, Joost</au><au>Thusberg, Janita</au><au>Tosatto, Silvio C.E</au><au>Vihinen, Mauno</au><au>Valiaho, Jouni</au><au>Repo, Susanna</au><au>Moult, John</au><au>Brenner, Steven E</au><au>Friedberg, Iddo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing computational predictions of the phenotypic effect of cystathionine-beta-synthase variants</atitle><jtitle>HUMAN MUTATION</jtitle><date>2019-09</date><risdate>2019</risdate><volume>40</volume><issue>9</issue><spage>1530</spage><epage>1545</epage><pages>1530-1545</pages><issn>1059-7794</issn><abstract>Accurate prediction of the impact of genomic variation on phenotype is a major goal of computational biology and an important contributor to personalized medicine. Computational predictions can lead to a better understanding of the mechanisms underlying genetic diseases, including cancer, but their adoption requires thorough and unbiased assessment. Cystathionine-beta-synthase (CBS) is an enzyme that catalyzes the first step of the transsulfuration pathway, from homocysteine to cystathionine, and in which variations are associated with human hyperhomocysteinemia and homocystinuria. We have created a computational challenge under the CAGI framework to evaluate how well different methods can predict the phenotypic effect(s) of CBS single amino acid substitutions using a blinded experimental data set. CAGI participants were asked to predict yeast growth based on the identity of the mutations. The performance of the methods was evaluated using several metrics. The CBS challenge highlighted the difficulty of predicting the phenotype of an ex vivo system in a model organism when classification models were trained on human disease data. We also discuss the variations in difficulty of prediction for known benign and deleterious variants, as well as identify methodological and experimental constraints with lessons to be learned for future challenges.</abstract><pub>WILEY</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-7794
ispartof HUMAN MUTATION, 2019-09, Vol.40 (9), p.1530-1545
issn 1059-7794
language eng
recordid cdi_kuleuven_dspace_123456789_647909
source Lirias (KU Leuven Association); Wiley Online Library Journals Frontfile Complete
title Assessing computational predictions of the phenotypic effect of cystathionine-beta-synthase variants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A57%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20computational%20predictions%20of%20the%20phenotypic%20effect%20of%20cystathionine-beta-synthase%20variants&rft.jtitle=HUMAN%20MUTATION&rft.au=Kasak,%20Laura&rft.date=2019-09&rft.volume=40&rft.issue=9&rft.spage=1530&rft.epage=1545&rft.pages=1530-1545&rft.issn=1059-7794&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_647909%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true