Leigh Syndrome Mouse Model Can Be Rescued by Interventions that Normalize Brain Hyperoxia, but Not HIF Activation
Leigh syndrome is a devastating mitochondrial disease for which there are no proven therapies. We previously showed that breathing chronic, continuous hypoxia can prevent and even reverse neurological disease in the Ndufs4 knockout (KO) mouse model of complex I (CI) deficiency and Leigh syndrome. He...
Gespeichert in:
Veröffentlicht in: | CELL METABOLISM 2019-10, Vol.30 (4), p.824-+ |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | + |
---|---|
container_issue | 4 |
container_start_page | 824 |
container_title | CELL METABOLISM |
container_volume | 30 |
creator | Jain, Isha H Zazzeron, Luca Goldberger, Olga Marutani, Eizo Wojtkiewicz, Gregory R Ast, Tslil Wang, Hong Schleifer, Grigorij Stepanova, Anna Brepoels, Kathleen Schoonjans, Luc Carmeliet, Peter Galkin, Alexander Ichinose, Fumito Zapol, Warren M Mootha, Vamsi K |
description | Leigh syndrome is a devastating mitochondrial disease for which there are no proven therapies. We previously showed that breathing chronic, continuous hypoxia can prevent and even reverse neurological disease in the Ndufs4 knockout (KO) mouse model of complex I (CI) deficiency and Leigh syndrome. Here, we show that genetic activation of the hypoxia-inducible factor transcriptional program via any of four different strategies is insufficient to rescue disease. Rather, we observe an age-dependent decline in whole-body oxygen consumption. These mice exhibit brain tissue hyperoxia, which is normalized by hypoxic breathing. Alternative experimental strategies to reduce oxygen delivery, including breathing carbon monoxide (600 ppm in air) or severe anemia, can reverse neurological disease. Therefore, unused oxygen is the most likely culprit in the pathology of this disease. While pharmacologic activation of the hypoxia response is unlikely to alleviate disease in vivo, interventions that safely normalize brain tissue hyperoxia may hold therapeutic potential. |
format | Article |
fullrecord | <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_647256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_647256</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6472563</originalsourceid><addsrcrecordid>eNqNjMsOwUAYhWdB4voO_84CSdtpS5cIqQQL7JvR_hjaGebSqKeniQewOWdxvvM1SNsNAmfsu9RtkY7WN8ehIY1omzw3yC9XOFQiU7JA2Eqr68wwhwUTMEfYo04tZnCqYC0MqhKF4VJoMFdmYCdVwXL-RpgrxgXE1QOVfHE2gpOtZwPxegWz1PCS1b8eaZ5ZrrH_6y4ZrJbHRTy-2xztV55k-sFSTFyP-kE4mUZJ6E-8IKRdMvyPTMzL0P-9H6deV-s</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Leigh Syndrome Mouse Model Can Be Rescued by Interventions that Normalize Brain Hyperoxia, but Not HIF Activation</title><source>Lirias (KU Leuven Association)</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Jain, Isha H ; Zazzeron, Luca ; Goldberger, Olga ; Marutani, Eizo ; Wojtkiewicz, Gregory R ; Ast, Tslil ; Wang, Hong ; Schleifer, Grigorij ; Stepanova, Anna ; Brepoels, Kathleen ; Schoonjans, Luc ; Carmeliet, Peter ; Galkin, Alexander ; Ichinose, Fumito ; Zapol, Warren M ; Mootha, Vamsi K</creator><creatorcontrib>Jain, Isha H ; Zazzeron, Luca ; Goldberger, Olga ; Marutani, Eizo ; Wojtkiewicz, Gregory R ; Ast, Tslil ; Wang, Hong ; Schleifer, Grigorij ; Stepanova, Anna ; Brepoels, Kathleen ; Schoonjans, Luc ; Carmeliet, Peter ; Galkin, Alexander ; Ichinose, Fumito ; Zapol, Warren M ; Mootha, Vamsi K</creatorcontrib><description>Leigh syndrome is a devastating mitochondrial disease for which there are no proven therapies. We previously showed that breathing chronic, continuous hypoxia can prevent and even reverse neurological disease in the Ndufs4 knockout (KO) mouse model of complex I (CI) deficiency and Leigh syndrome. Here, we show that genetic activation of the hypoxia-inducible factor transcriptional program via any of four different strategies is insufficient to rescue disease. Rather, we observe an age-dependent decline in whole-body oxygen consumption. These mice exhibit brain tissue hyperoxia, which is normalized by hypoxic breathing. Alternative experimental strategies to reduce oxygen delivery, including breathing carbon monoxide (600 ppm in air) or severe anemia, can reverse neurological disease. Therefore, unused oxygen is the most likely culprit in the pathology of this disease. While pharmacologic activation of the hypoxia response is unlikely to alleviate disease in vivo, interventions that safely normalize brain tissue hyperoxia may hold therapeutic potential.</description><identifier>ISSN: 1550-4131</identifier><language>eng</language><publisher>CELL PRESS</publisher><ispartof>CELL METABOLISM, 2019-10, Vol.30 (4), p.824-+</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,316,782,786,27867</link.rule.ids></links><search><creatorcontrib>Jain, Isha H</creatorcontrib><creatorcontrib>Zazzeron, Luca</creatorcontrib><creatorcontrib>Goldberger, Olga</creatorcontrib><creatorcontrib>Marutani, Eizo</creatorcontrib><creatorcontrib>Wojtkiewicz, Gregory R</creatorcontrib><creatorcontrib>Ast, Tslil</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><creatorcontrib>Schleifer, Grigorij</creatorcontrib><creatorcontrib>Stepanova, Anna</creatorcontrib><creatorcontrib>Brepoels, Kathleen</creatorcontrib><creatorcontrib>Schoonjans, Luc</creatorcontrib><creatorcontrib>Carmeliet, Peter</creatorcontrib><creatorcontrib>Galkin, Alexander</creatorcontrib><creatorcontrib>Ichinose, Fumito</creatorcontrib><creatorcontrib>Zapol, Warren M</creatorcontrib><creatorcontrib>Mootha, Vamsi K</creatorcontrib><title>Leigh Syndrome Mouse Model Can Be Rescued by Interventions that Normalize Brain Hyperoxia, but Not HIF Activation</title><title>CELL METABOLISM</title><description>Leigh syndrome is a devastating mitochondrial disease for which there are no proven therapies. We previously showed that breathing chronic, continuous hypoxia can prevent and even reverse neurological disease in the Ndufs4 knockout (KO) mouse model of complex I (CI) deficiency and Leigh syndrome. Here, we show that genetic activation of the hypoxia-inducible factor transcriptional program via any of four different strategies is insufficient to rescue disease. Rather, we observe an age-dependent decline in whole-body oxygen consumption. These mice exhibit brain tissue hyperoxia, which is normalized by hypoxic breathing. Alternative experimental strategies to reduce oxygen delivery, including breathing carbon monoxide (600 ppm in air) or severe anemia, can reverse neurological disease. Therefore, unused oxygen is the most likely culprit in the pathology of this disease. While pharmacologic activation of the hypoxia response is unlikely to alleviate disease in vivo, interventions that safely normalize brain tissue hyperoxia may hold therapeutic potential.</description><issn>1550-4131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNjMsOwUAYhWdB4voO_84CSdtpS5cIqQQL7JvR_hjaGebSqKeniQewOWdxvvM1SNsNAmfsu9RtkY7WN8ehIY1omzw3yC9XOFQiU7JA2Eqr68wwhwUTMEfYo04tZnCqYC0MqhKF4VJoMFdmYCdVwXL-RpgrxgXE1QOVfHE2gpOtZwPxegWz1PCS1b8eaZ5ZrrH_6y4ZrJbHRTy-2xztV55k-sFSTFyP-kE4mUZJ6E-8IKRdMvyPTMzL0P-9H6deV-s</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Jain, Isha H</creator><creator>Zazzeron, Luca</creator><creator>Goldberger, Olga</creator><creator>Marutani, Eizo</creator><creator>Wojtkiewicz, Gregory R</creator><creator>Ast, Tslil</creator><creator>Wang, Hong</creator><creator>Schleifer, Grigorij</creator><creator>Stepanova, Anna</creator><creator>Brepoels, Kathleen</creator><creator>Schoonjans, Luc</creator><creator>Carmeliet, Peter</creator><creator>Galkin, Alexander</creator><creator>Ichinose, Fumito</creator><creator>Zapol, Warren M</creator><creator>Mootha, Vamsi K</creator><general>CELL PRESS</general><scope>FZOIL</scope></search><sort><creationdate>20191001</creationdate><title>Leigh Syndrome Mouse Model Can Be Rescued by Interventions that Normalize Brain Hyperoxia, but Not HIF Activation</title><author>Jain, Isha H ; Zazzeron, Luca ; Goldberger, Olga ; Marutani, Eizo ; Wojtkiewicz, Gregory R ; Ast, Tslil ; Wang, Hong ; Schleifer, Grigorij ; Stepanova, Anna ; Brepoels, Kathleen ; Schoonjans, Luc ; Carmeliet, Peter ; Galkin, Alexander ; Ichinose, Fumito ; Zapol, Warren M ; Mootha, Vamsi K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6472563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Isha H</creatorcontrib><creatorcontrib>Zazzeron, Luca</creatorcontrib><creatorcontrib>Goldberger, Olga</creatorcontrib><creatorcontrib>Marutani, Eizo</creatorcontrib><creatorcontrib>Wojtkiewicz, Gregory R</creatorcontrib><creatorcontrib>Ast, Tslil</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><creatorcontrib>Schleifer, Grigorij</creatorcontrib><creatorcontrib>Stepanova, Anna</creatorcontrib><creatorcontrib>Brepoels, Kathleen</creatorcontrib><creatorcontrib>Schoonjans, Luc</creatorcontrib><creatorcontrib>Carmeliet, Peter</creatorcontrib><creatorcontrib>Galkin, Alexander</creatorcontrib><creatorcontrib>Ichinose, Fumito</creatorcontrib><creatorcontrib>Zapol, Warren M</creatorcontrib><creatorcontrib>Mootha, Vamsi K</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>CELL METABOLISM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Isha H</au><au>Zazzeron, Luca</au><au>Goldberger, Olga</au><au>Marutani, Eizo</au><au>Wojtkiewicz, Gregory R</au><au>Ast, Tslil</au><au>Wang, Hong</au><au>Schleifer, Grigorij</au><au>Stepanova, Anna</au><au>Brepoels, Kathleen</au><au>Schoonjans, Luc</au><au>Carmeliet, Peter</au><au>Galkin, Alexander</au><au>Ichinose, Fumito</au><au>Zapol, Warren M</au><au>Mootha, Vamsi K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leigh Syndrome Mouse Model Can Be Rescued by Interventions that Normalize Brain Hyperoxia, but Not HIF Activation</atitle><jtitle>CELL METABOLISM</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>30</volume><issue>4</issue><spage>824</spage><epage>+</epage><pages>824-+</pages><issn>1550-4131</issn><abstract>Leigh syndrome is a devastating mitochondrial disease for which there are no proven therapies. We previously showed that breathing chronic, continuous hypoxia can prevent and even reverse neurological disease in the Ndufs4 knockout (KO) mouse model of complex I (CI) deficiency and Leigh syndrome. Here, we show that genetic activation of the hypoxia-inducible factor transcriptional program via any of four different strategies is insufficient to rescue disease. Rather, we observe an age-dependent decline in whole-body oxygen consumption. These mice exhibit brain tissue hyperoxia, which is normalized by hypoxic breathing. Alternative experimental strategies to reduce oxygen delivery, including breathing carbon monoxide (600 ppm in air) or severe anemia, can reverse neurological disease. Therefore, unused oxygen is the most likely culprit in the pathology of this disease. While pharmacologic activation of the hypoxia response is unlikely to alleviate disease in vivo, interventions that safely normalize brain tissue hyperoxia may hold therapeutic potential.</abstract><pub>CELL PRESS</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1550-4131 |
ispartof | CELL METABOLISM, 2019-10, Vol.30 (4), p.824-+ |
issn | 1550-4131 |
language | eng |
recordid | cdi_kuleuven_dspace_123456789_647256 |
source | Lirias (KU Leuven Association); Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier) |
title | Leigh Syndrome Mouse Model Can Be Rescued by Interventions that Normalize Brain Hyperoxia, but Not HIF Activation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leigh%20Syndrome%20Mouse%20Model%20Can%20Be%20Rescued%20by%20Interventions%20that%20Normalize%20Brain%20Hyperoxia,%20but%20Not%20HIF%20Activation&rft.jtitle=CELL%20METABOLISM&rft.au=Jain,%20Isha%20H&rft.date=2019-10-01&rft.volume=30&rft.issue=4&rft.spage=824&rft.epage=+&rft.pages=824-+&rft.issn=1550-4131&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_647256%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |