Leigh Syndrome Mouse Model Can Be Rescued by Interventions that Normalize Brain Hyperoxia, but Not HIF Activation

Leigh syndrome is a devastating mitochondrial disease for which there are no proven therapies. We previously showed that breathing chronic, continuous hypoxia can prevent and even reverse neurological disease in the Ndufs4 knockout (KO) mouse model of complex I (CI) deficiency and Leigh syndrome. He...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CELL METABOLISM 2019-10, Vol.30 (4), p.824-+
Hauptverfasser: Jain, Isha H, Zazzeron, Luca, Goldberger, Olga, Marutani, Eizo, Wojtkiewicz, Gregory R, Ast, Tslil, Wang, Hong, Schleifer, Grigorij, Stepanova, Anna, Brepoels, Kathleen, Schoonjans, Luc, Carmeliet, Peter, Galkin, Alexander, Ichinose, Fumito, Zapol, Warren M, Mootha, Vamsi K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page +
container_issue 4
container_start_page 824
container_title CELL METABOLISM
container_volume 30
creator Jain, Isha H
Zazzeron, Luca
Goldberger, Olga
Marutani, Eizo
Wojtkiewicz, Gregory R
Ast, Tslil
Wang, Hong
Schleifer, Grigorij
Stepanova, Anna
Brepoels, Kathleen
Schoonjans, Luc
Carmeliet, Peter
Galkin, Alexander
Ichinose, Fumito
Zapol, Warren M
Mootha, Vamsi K
description Leigh syndrome is a devastating mitochondrial disease for which there are no proven therapies. We previously showed that breathing chronic, continuous hypoxia can prevent and even reverse neurological disease in the Ndufs4 knockout (KO) mouse model of complex I (CI) deficiency and Leigh syndrome. Here, we show that genetic activation of the hypoxia-inducible factor transcriptional program via any of four different strategies is insufficient to rescue disease. Rather, we observe an age-dependent decline in whole-body oxygen consumption. These mice exhibit brain tissue hyperoxia, which is normalized by hypoxic breathing. Alternative experimental strategies to reduce oxygen delivery, including breathing carbon monoxide (600 ppm in air) or severe anemia, can reverse neurological disease. Therefore, unused oxygen is the most likely culprit in the pathology of this disease. While pharmacologic activation of the hypoxia response is unlikely to alleviate disease in vivo, interventions that safely normalize brain tissue hyperoxia may hold therapeutic potential.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_647256</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_647256</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6472563</originalsourceid><addsrcrecordid>eNqNjMsOwUAYhWdB4voO_84CSdtpS5cIqQQL7JvR_hjaGebSqKeniQewOWdxvvM1SNsNAmfsu9RtkY7WN8ehIY1omzw3yC9XOFQiU7JA2Eqr68wwhwUTMEfYo04tZnCqYC0MqhKF4VJoMFdmYCdVwXL-RpgrxgXE1QOVfHE2gpOtZwPxegWz1PCS1b8eaZ5ZrrH_6y4ZrJbHRTy-2xztV55k-sFSTFyP-kE4mUZJ6E-8IKRdMvyPTMzL0P-9H6deV-s</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Leigh Syndrome Mouse Model Can Be Rescued by Interventions that Normalize Brain Hyperoxia, but Not HIF Activation</title><source>Lirias (KU Leuven Association)</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><creator>Jain, Isha H ; Zazzeron, Luca ; Goldberger, Olga ; Marutani, Eizo ; Wojtkiewicz, Gregory R ; Ast, Tslil ; Wang, Hong ; Schleifer, Grigorij ; Stepanova, Anna ; Brepoels, Kathleen ; Schoonjans, Luc ; Carmeliet, Peter ; Galkin, Alexander ; Ichinose, Fumito ; Zapol, Warren M ; Mootha, Vamsi K</creator><creatorcontrib>Jain, Isha H ; Zazzeron, Luca ; Goldberger, Olga ; Marutani, Eizo ; Wojtkiewicz, Gregory R ; Ast, Tslil ; Wang, Hong ; Schleifer, Grigorij ; Stepanova, Anna ; Brepoels, Kathleen ; Schoonjans, Luc ; Carmeliet, Peter ; Galkin, Alexander ; Ichinose, Fumito ; Zapol, Warren M ; Mootha, Vamsi K</creatorcontrib><description>Leigh syndrome is a devastating mitochondrial disease for which there are no proven therapies. We previously showed that breathing chronic, continuous hypoxia can prevent and even reverse neurological disease in the Ndufs4 knockout (KO) mouse model of complex I (CI) deficiency and Leigh syndrome. Here, we show that genetic activation of the hypoxia-inducible factor transcriptional program via any of four different strategies is insufficient to rescue disease. Rather, we observe an age-dependent decline in whole-body oxygen consumption. These mice exhibit brain tissue hyperoxia, which is normalized by hypoxic breathing. Alternative experimental strategies to reduce oxygen delivery, including breathing carbon monoxide (600 ppm in air) or severe anemia, can reverse neurological disease. Therefore, unused oxygen is the most likely culprit in the pathology of this disease. While pharmacologic activation of the hypoxia response is unlikely to alleviate disease in vivo, interventions that safely normalize brain tissue hyperoxia may hold therapeutic potential.</description><identifier>ISSN: 1550-4131</identifier><language>eng</language><publisher>CELL PRESS</publisher><ispartof>CELL METABOLISM, 2019-10, Vol.30 (4), p.824-+</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,316,782,786,27867</link.rule.ids></links><search><creatorcontrib>Jain, Isha H</creatorcontrib><creatorcontrib>Zazzeron, Luca</creatorcontrib><creatorcontrib>Goldberger, Olga</creatorcontrib><creatorcontrib>Marutani, Eizo</creatorcontrib><creatorcontrib>Wojtkiewicz, Gregory R</creatorcontrib><creatorcontrib>Ast, Tslil</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><creatorcontrib>Schleifer, Grigorij</creatorcontrib><creatorcontrib>Stepanova, Anna</creatorcontrib><creatorcontrib>Brepoels, Kathleen</creatorcontrib><creatorcontrib>Schoonjans, Luc</creatorcontrib><creatorcontrib>Carmeliet, Peter</creatorcontrib><creatorcontrib>Galkin, Alexander</creatorcontrib><creatorcontrib>Ichinose, Fumito</creatorcontrib><creatorcontrib>Zapol, Warren M</creatorcontrib><creatorcontrib>Mootha, Vamsi K</creatorcontrib><title>Leigh Syndrome Mouse Model Can Be Rescued by Interventions that Normalize Brain Hyperoxia, but Not HIF Activation</title><title>CELL METABOLISM</title><description>Leigh syndrome is a devastating mitochondrial disease for which there are no proven therapies. We previously showed that breathing chronic, continuous hypoxia can prevent and even reverse neurological disease in the Ndufs4 knockout (KO) mouse model of complex I (CI) deficiency and Leigh syndrome. Here, we show that genetic activation of the hypoxia-inducible factor transcriptional program via any of four different strategies is insufficient to rescue disease. Rather, we observe an age-dependent decline in whole-body oxygen consumption. These mice exhibit brain tissue hyperoxia, which is normalized by hypoxic breathing. Alternative experimental strategies to reduce oxygen delivery, including breathing carbon monoxide (600 ppm in air) or severe anemia, can reverse neurological disease. Therefore, unused oxygen is the most likely culprit in the pathology of this disease. While pharmacologic activation of the hypoxia response is unlikely to alleviate disease in vivo, interventions that safely normalize brain tissue hyperoxia may hold therapeutic potential.</description><issn>1550-4131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNjMsOwUAYhWdB4voO_84CSdtpS5cIqQQL7JvR_hjaGebSqKeniQewOWdxvvM1SNsNAmfsu9RtkY7WN8ehIY1omzw3yC9XOFQiU7JA2Eqr68wwhwUTMEfYo04tZnCqYC0MqhKF4VJoMFdmYCdVwXL-RpgrxgXE1QOVfHE2gpOtZwPxegWz1PCS1b8eaZ5ZrrH_6y4ZrJbHRTy-2xztV55k-sFSTFyP-kE4mUZJ6E-8IKRdMvyPTMzL0P-9H6deV-s</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Jain, Isha H</creator><creator>Zazzeron, Luca</creator><creator>Goldberger, Olga</creator><creator>Marutani, Eizo</creator><creator>Wojtkiewicz, Gregory R</creator><creator>Ast, Tslil</creator><creator>Wang, Hong</creator><creator>Schleifer, Grigorij</creator><creator>Stepanova, Anna</creator><creator>Brepoels, Kathleen</creator><creator>Schoonjans, Luc</creator><creator>Carmeliet, Peter</creator><creator>Galkin, Alexander</creator><creator>Ichinose, Fumito</creator><creator>Zapol, Warren M</creator><creator>Mootha, Vamsi K</creator><general>CELL PRESS</general><scope>FZOIL</scope></search><sort><creationdate>20191001</creationdate><title>Leigh Syndrome Mouse Model Can Be Rescued by Interventions that Normalize Brain Hyperoxia, but Not HIF Activation</title><author>Jain, Isha H ; Zazzeron, Luca ; Goldberger, Olga ; Marutani, Eizo ; Wojtkiewicz, Gregory R ; Ast, Tslil ; Wang, Hong ; Schleifer, Grigorij ; Stepanova, Anna ; Brepoels, Kathleen ; Schoonjans, Luc ; Carmeliet, Peter ; Galkin, Alexander ; Ichinose, Fumito ; Zapol, Warren M ; Mootha, Vamsi K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6472563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jain, Isha H</creatorcontrib><creatorcontrib>Zazzeron, Luca</creatorcontrib><creatorcontrib>Goldberger, Olga</creatorcontrib><creatorcontrib>Marutani, Eizo</creatorcontrib><creatorcontrib>Wojtkiewicz, Gregory R</creatorcontrib><creatorcontrib>Ast, Tslil</creatorcontrib><creatorcontrib>Wang, Hong</creatorcontrib><creatorcontrib>Schleifer, Grigorij</creatorcontrib><creatorcontrib>Stepanova, Anna</creatorcontrib><creatorcontrib>Brepoels, Kathleen</creatorcontrib><creatorcontrib>Schoonjans, Luc</creatorcontrib><creatorcontrib>Carmeliet, Peter</creatorcontrib><creatorcontrib>Galkin, Alexander</creatorcontrib><creatorcontrib>Ichinose, Fumito</creatorcontrib><creatorcontrib>Zapol, Warren M</creatorcontrib><creatorcontrib>Mootha, Vamsi K</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>CELL METABOLISM</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jain, Isha H</au><au>Zazzeron, Luca</au><au>Goldberger, Olga</au><au>Marutani, Eizo</au><au>Wojtkiewicz, Gregory R</au><au>Ast, Tslil</au><au>Wang, Hong</au><au>Schleifer, Grigorij</au><au>Stepanova, Anna</au><au>Brepoels, Kathleen</au><au>Schoonjans, Luc</au><au>Carmeliet, Peter</au><au>Galkin, Alexander</au><au>Ichinose, Fumito</au><au>Zapol, Warren M</au><au>Mootha, Vamsi K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leigh Syndrome Mouse Model Can Be Rescued by Interventions that Normalize Brain Hyperoxia, but Not HIF Activation</atitle><jtitle>CELL METABOLISM</jtitle><date>2019-10-01</date><risdate>2019</risdate><volume>30</volume><issue>4</issue><spage>824</spage><epage>+</epage><pages>824-+</pages><issn>1550-4131</issn><abstract>Leigh syndrome is a devastating mitochondrial disease for which there are no proven therapies. We previously showed that breathing chronic, continuous hypoxia can prevent and even reverse neurological disease in the Ndufs4 knockout (KO) mouse model of complex I (CI) deficiency and Leigh syndrome. Here, we show that genetic activation of the hypoxia-inducible factor transcriptional program via any of four different strategies is insufficient to rescue disease. Rather, we observe an age-dependent decline in whole-body oxygen consumption. These mice exhibit brain tissue hyperoxia, which is normalized by hypoxic breathing. Alternative experimental strategies to reduce oxygen delivery, including breathing carbon monoxide (600 ppm in air) or severe anemia, can reverse neurological disease. Therefore, unused oxygen is the most likely culprit in the pathology of this disease. While pharmacologic activation of the hypoxia response is unlikely to alleviate disease in vivo, interventions that safely normalize brain tissue hyperoxia may hold therapeutic potential.</abstract><pub>CELL PRESS</pub></addata></record>
fulltext fulltext
identifier ISSN: 1550-4131
ispartof CELL METABOLISM, 2019-10, Vol.30 (4), p.824-+
issn 1550-4131
language eng
recordid cdi_kuleuven_dspace_123456789_647256
source Lirias (KU Leuven Association); Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier)
title Leigh Syndrome Mouse Model Can Be Rescued by Interventions that Normalize Brain Hyperoxia, but Not HIF Activation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T06%3A15%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leigh%20Syndrome%20Mouse%20Model%20Can%20Be%20Rescued%20by%20Interventions%20that%20Normalize%20Brain%20Hyperoxia,%20but%20Not%20HIF%20Activation&rft.jtitle=CELL%20METABOLISM&rft.au=Jain,%20Isha%20H&rft.date=2019-10-01&rft.volume=30&rft.issue=4&rft.spage=824&rft.epage=+&rft.pages=824-+&rft.issn=1550-4131&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_647256%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true