Adaptive nocturnal seizure detection using heart rate and low-complexity novelty detection

PURPOSE: Automated seizure detection at home is mostly done using either patient-independent algorithms or manually personalized algorithms. Patient-independent algorithms, however, lead to too many false alarms, whereas the manually personalized algorithms typically require manual input from an exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SEIZURE-EUROPEAN JOURNAL OF EPILEPSY 2018-07, Vol.59, p.48-53
Hauptverfasser: De Cooman, Thomas, Varon, Carolina, Van de Vel, Anouk, Jansen, Katrien, Ceulemans, Berten, Lagae, Lieven, Van Huffel, Sabine
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:PURPOSE: Automated seizure detection at home is mostly done using either patient-independent algorithms or manually personalized algorithms. Patient-independent algorithms, however, lead to too many false alarms, whereas the manually personalized algorithms typically require manual input from an experienced clinician for each patient, which is a costly and unscalable procedure and it can only be applied when the patient had a sufficient amount of seizures. We therefore propose a nocturnal heart rate based seizure detection algorithm that automatically adapts to the patient without requiring seizure labels. METHODS: The proposed method initially starts with a patient-independent algorithm. After a very short initialization period, the algorithm already adapts to the patients' characteristics by using a low-complex novelty detection classifier. The algorithm is evaluated on 28 pediatric patients with 107 convulsive and clinical subtle seizures during 695 h of nocturnal multicenter data in a retrospective study that mimics a real-time analysis. RESULTS: By using the adaptive seizure detection algorithm, the overall performance was 77.6% sensitivity with on average 2.56 false alarms per night. This is 57% less false alarms than a patient-independent algorithm with a similar sensitivity. Patients with tonic-clonic seizures showed a 96% sensitivity with on average 1.84 false alarms per night. CONCLUSION: The proposed method shows a strongly improved detection performance over patient-independent performance, without requiring manual adaptation by a clinician. Due to the low-complexity of the algorithm, it can be easily implemented on wearables as part of a (multimodal) seizure alarm system.
ISSN:1059-1311