Regional variation limits applications of healthy gut microbiome reference ranges and disease models

Dysbiosis, departure of the gut microbiome from a healthy state, has been suggested to be a powerful biomarker of disease incidence and progression1-3. Diagnostic applications have been proposed for inflammatory bowel disease diagnosis and prognosis4, colorectal cancer prescreening5 and therapeutic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NATURE MEDICINE 2018-10, Vol.24 (10), p.1532-+
Hauptverfasser: He, Yan, Wu, Wei, Zheng, Hui-Min, Li, Pan, McDonald, Daniel, Sheng, Hua-Fang, Chen, Mu-Xuan, Chen, Zi-Hui, Ji, Gui-Yuan, Zheng, Zhong-Dai-Xi, Mujagond, Prabhakar, Chen, Xiao-Jiao, Rong, Zu-Hua, Chen, Peng, Lyu, Li-Yi, Wang, Xian, Wu, Chong-Bin, Yu, Nan, Xu, Yan-Jun, Yin, Jia, Raes, Jeroen, Knight, Rob, Ma, Wen-Jun, Zhou, Hong-Wei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page +
container_issue 10
container_start_page 1532
container_title NATURE MEDICINE
container_volume 24
creator He, Yan
Wu, Wei
Zheng, Hui-Min
Li, Pan
McDonald, Daniel
Sheng, Hua-Fang
Chen, Mu-Xuan
Chen, Zi-Hui
Ji, Gui-Yuan
Zheng, Zhong-Dai-Xi
Mujagond, Prabhakar
Chen, Xiao-Jiao
Rong, Zu-Hua
Chen, Peng
Lyu, Li-Yi
Wang, Xian
Wu, Chong-Bin
Yu, Nan
Xu, Yan-Jun
Yin, Jia
Raes, Jeroen
Knight, Rob
Ma, Wen-Jun
Zhou, Hong-Wei
description Dysbiosis, departure of the gut microbiome from a healthy state, has been suggested to be a powerful biomarker of disease incidence and progression1-3. Diagnostic applications have been proposed for inflammatory bowel disease diagnosis and prognosis4, colorectal cancer prescreening5 and therapeutic choices in melanoma6. Noninvasive sampling could facilitate large-scale public health applications, including early diagnosis and risk assessment in metabolic7 and cardiovascular diseases8. To understand the generalizability of microbiota-based diagnostic models of metabolic disease, we characterized the gut microbiota of 7,009 individuals from 14 districts within 1 province in China. Among phenotypes, host location showed the strongest associations with microbiota variations. Microbiota-based metabolic disease models developed in one location failed when used elsewhere, suggesting that such models cannot be extrapolated. Interpolated models performed much better, especially in diseases with obvious microbiota-related characteristics. Interpolation efficiency decreased as geographic scale increased, indicating a need to build localized baseline and disease models to predict metabolic risks.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_628509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_628509</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6285093</originalsourceid><addsrcrecordid>eNqNjM0OgjAQhHvQxN932JsHQ1JBEM5G49l4JytdoFpawhaiby8xPoCn-TL5ZiZivpOHNEizOJmJBfNDShnJOJsLdaVKO4sGBuw0-pHB6EZ7Bmxbo4tvxeBKqAmNr99Q9R4aXXTurl1D0FFJHdliJLQVjTurQGkmZILGKTK8EtMSDdP6l0uxOZ9ux0vw7A31A9lccYsF5bsw2sfJIc3yJExjmUVLsf3PzP3LR___fgB7ClVh</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regional variation limits applications of healthy gut microbiome reference ranges and disease models</title><source>Lirias (KU Leuven Association)</source><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>He, Yan ; Wu, Wei ; Zheng, Hui-Min ; Li, Pan ; McDonald, Daniel ; Sheng, Hua-Fang ; Chen, Mu-Xuan ; Chen, Zi-Hui ; Ji, Gui-Yuan ; Zheng, Zhong-Dai-Xi ; Mujagond, Prabhakar ; Chen, Xiao-Jiao ; Rong, Zu-Hua ; Chen, Peng ; Lyu, Li-Yi ; Wang, Xian ; Wu, Chong-Bin ; Yu, Nan ; Xu, Yan-Jun ; Yin, Jia ; Raes, Jeroen ; Knight, Rob ; Ma, Wen-Jun ; Zhou, Hong-Wei</creator><creatorcontrib>He, Yan ; Wu, Wei ; Zheng, Hui-Min ; Li, Pan ; McDonald, Daniel ; Sheng, Hua-Fang ; Chen, Mu-Xuan ; Chen, Zi-Hui ; Ji, Gui-Yuan ; Zheng, Zhong-Dai-Xi ; Mujagond, Prabhakar ; Chen, Xiao-Jiao ; Rong, Zu-Hua ; Chen, Peng ; Lyu, Li-Yi ; Wang, Xian ; Wu, Chong-Bin ; Yu, Nan ; Xu, Yan-Jun ; Yin, Jia ; Raes, Jeroen ; Knight, Rob ; Ma, Wen-Jun ; Zhou, Hong-Wei</creatorcontrib><description>Dysbiosis, departure of the gut microbiome from a healthy state, has been suggested to be a powerful biomarker of disease incidence and progression1-3. Diagnostic applications have been proposed for inflammatory bowel disease diagnosis and prognosis4, colorectal cancer prescreening5 and therapeutic choices in melanoma6. Noninvasive sampling could facilitate large-scale public health applications, including early diagnosis and risk assessment in metabolic7 and cardiovascular diseases8. To understand the generalizability of microbiota-based diagnostic models of metabolic disease, we characterized the gut microbiota of 7,009 individuals from 14 districts within 1 province in China. Among phenotypes, host location showed the strongest associations with microbiota variations. Microbiota-based metabolic disease models developed in one location failed when used elsewhere, suggesting that such models cannot be extrapolated. Interpolated models performed much better, especially in diseases with obvious microbiota-related characteristics. Interpolation efficiency decreased as geographic scale increased, indicating a need to build localized baseline and disease models to predict metabolic risks.</description><identifier>ISSN: 1078-8956</identifier><language>eng</language><publisher>NATURE PUBLISHING GROUP</publisher><ispartof>NATURE MEDICINE, 2018-10, Vol.24 (10), p.1532-+</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27837</link.rule.ids></links><search><creatorcontrib>He, Yan</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Zheng, Hui-Min</creatorcontrib><creatorcontrib>Li, Pan</creatorcontrib><creatorcontrib>McDonald, Daniel</creatorcontrib><creatorcontrib>Sheng, Hua-Fang</creatorcontrib><creatorcontrib>Chen, Mu-Xuan</creatorcontrib><creatorcontrib>Chen, Zi-Hui</creatorcontrib><creatorcontrib>Ji, Gui-Yuan</creatorcontrib><creatorcontrib>Zheng, Zhong-Dai-Xi</creatorcontrib><creatorcontrib>Mujagond, Prabhakar</creatorcontrib><creatorcontrib>Chen, Xiao-Jiao</creatorcontrib><creatorcontrib>Rong, Zu-Hua</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Lyu, Li-Yi</creatorcontrib><creatorcontrib>Wang, Xian</creatorcontrib><creatorcontrib>Wu, Chong-Bin</creatorcontrib><creatorcontrib>Yu, Nan</creatorcontrib><creatorcontrib>Xu, Yan-Jun</creatorcontrib><creatorcontrib>Yin, Jia</creatorcontrib><creatorcontrib>Raes, Jeroen</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>Ma, Wen-Jun</creatorcontrib><creatorcontrib>Zhou, Hong-Wei</creatorcontrib><title>Regional variation limits applications of healthy gut microbiome reference ranges and disease models</title><title>NATURE MEDICINE</title><description>Dysbiosis, departure of the gut microbiome from a healthy state, has been suggested to be a powerful biomarker of disease incidence and progression1-3. Diagnostic applications have been proposed for inflammatory bowel disease diagnosis and prognosis4, colorectal cancer prescreening5 and therapeutic choices in melanoma6. Noninvasive sampling could facilitate large-scale public health applications, including early diagnosis and risk assessment in metabolic7 and cardiovascular diseases8. To understand the generalizability of microbiota-based diagnostic models of metabolic disease, we characterized the gut microbiota of 7,009 individuals from 14 districts within 1 province in China. Among phenotypes, host location showed the strongest associations with microbiota variations. Microbiota-based metabolic disease models developed in one location failed when used elsewhere, suggesting that such models cannot be extrapolated. Interpolated models performed much better, especially in diseases with obvious microbiota-related characteristics. Interpolation efficiency decreased as geographic scale increased, indicating a need to build localized baseline and disease models to predict metabolic risks.</description><issn>1078-8956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNjM0OgjAQhHvQxN932JsHQ1JBEM5G49l4JytdoFpawhaiby8xPoCn-TL5ZiZivpOHNEizOJmJBfNDShnJOJsLdaVKO4sGBuw0-pHB6EZ7Bmxbo4tvxeBKqAmNr99Q9R4aXXTurl1D0FFJHdliJLQVjTurQGkmZILGKTK8EtMSDdP6l0uxOZ9ux0vw7A31A9lccYsF5bsw2sfJIc3yJExjmUVLsf3PzP3LR___fgB7ClVh</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>He, Yan</creator><creator>Wu, Wei</creator><creator>Zheng, Hui-Min</creator><creator>Li, Pan</creator><creator>McDonald, Daniel</creator><creator>Sheng, Hua-Fang</creator><creator>Chen, Mu-Xuan</creator><creator>Chen, Zi-Hui</creator><creator>Ji, Gui-Yuan</creator><creator>Zheng, Zhong-Dai-Xi</creator><creator>Mujagond, Prabhakar</creator><creator>Chen, Xiao-Jiao</creator><creator>Rong, Zu-Hua</creator><creator>Chen, Peng</creator><creator>Lyu, Li-Yi</creator><creator>Wang, Xian</creator><creator>Wu, Chong-Bin</creator><creator>Yu, Nan</creator><creator>Xu, Yan-Jun</creator><creator>Yin, Jia</creator><creator>Raes, Jeroen</creator><creator>Knight, Rob</creator><creator>Ma, Wen-Jun</creator><creator>Zhou, Hong-Wei</creator><general>NATURE PUBLISHING GROUP</general><scope>FZOIL</scope></search><sort><creationdate>201810</creationdate><title>Regional variation limits applications of healthy gut microbiome reference ranges and disease models</title><author>He, Yan ; Wu, Wei ; Zheng, Hui-Min ; Li, Pan ; McDonald, Daniel ; Sheng, Hua-Fang ; Chen, Mu-Xuan ; Chen, Zi-Hui ; Ji, Gui-Yuan ; Zheng, Zhong-Dai-Xi ; Mujagond, Prabhakar ; Chen, Xiao-Jiao ; Rong, Zu-Hua ; Chen, Peng ; Lyu, Li-Yi ; Wang, Xian ; Wu, Chong-Bin ; Yu, Nan ; Xu, Yan-Jun ; Yin, Jia ; Raes, Jeroen ; Knight, Rob ; Ma, Wen-Jun ; Zhou, Hong-Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6285093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Yan</creatorcontrib><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Zheng, Hui-Min</creatorcontrib><creatorcontrib>Li, Pan</creatorcontrib><creatorcontrib>McDonald, Daniel</creatorcontrib><creatorcontrib>Sheng, Hua-Fang</creatorcontrib><creatorcontrib>Chen, Mu-Xuan</creatorcontrib><creatorcontrib>Chen, Zi-Hui</creatorcontrib><creatorcontrib>Ji, Gui-Yuan</creatorcontrib><creatorcontrib>Zheng, Zhong-Dai-Xi</creatorcontrib><creatorcontrib>Mujagond, Prabhakar</creatorcontrib><creatorcontrib>Chen, Xiao-Jiao</creatorcontrib><creatorcontrib>Rong, Zu-Hua</creatorcontrib><creatorcontrib>Chen, Peng</creatorcontrib><creatorcontrib>Lyu, Li-Yi</creatorcontrib><creatorcontrib>Wang, Xian</creatorcontrib><creatorcontrib>Wu, Chong-Bin</creatorcontrib><creatorcontrib>Yu, Nan</creatorcontrib><creatorcontrib>Xu, Yan-Jun</creatorcontrib><creatorcontrib>Yin, Jia</creatorcontrib><creatorcontrib>Raes, Jeroen</creatorcontrib><creatorcontrib>Knight, Rob</creatorcontrib><creatorcontrib>Ma, Wen-Jun</creatorcontrib><creatorcontrib>Zhou, Hong-Wei</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>NATURE MEDICINE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Yan</au><au>Wu, Wei</au><au>Zheng, Hui-Min</au><au>Li, Pan</au><au>McDonald, Daniel</au><au>Sheng, Hua-Fang</au><au>Chen, Mu-Xuan</au><au>Chen, Zi-Hui</au><au>Ji, Gui-Yuan</au><au>Zheng, Zhong-Dai-Xi</au><au>Mujagond, Prabhakar</au><au>Chen, Xiao-Jiao</au><au>Rong, Zu-Hua</au><au>Chen, Peng</au><au>Lyu, Li-Yi</au><au>Wang, Xian</au><au>Wu, Chong-Bin</au><au>Yu, Nan</au><au>Xu, Yan-Jun</au><au>Yin, Jia</au><au>Raes, Jeroen</au><au>Knight, Rob</au><au>Ma, Wen-Jun</au><au>Zhou, Hong-Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regional variation limits applications of healthy gut microbiome reference ranges and disease models</atitle><jtitle>NATURE MEDICINE</jtitle><date>2018-10</date><risdate>2018</risdate><volume>24</volume><issue>10</issue><spage>1532</spage><epage>+</epage><pages>1532-+</pages><issn>1078-8956</issn><abstract>Dysbiosis, departure of the gut microbiome from a healthy state, has been suggested to be a powerful biomarker of disease incidence and progression1-3. Diagnostic applications have been proposed for inflammatory bowel disease diagnosis and prognosis4, colorectal cancer prescreening5 and therapeutic choices in melanoma6. Noninvasive sampling could facilitate large-scale public health applications, including early diagnosis and risk assessment in metabolic7 and cardiovascular diseases8. To understand the generalizability of microbiota-based diagnostic models of metabolic disease, we characterized the gut microbiota of 7,009 individuals from 14 districts within 1 province in China. Among phenotypes, host location showed the strongest associations with microbiota variations. Microbiota-based metabolic disease models developed in one location failed when used elsewhere, suggesting that such models cannot be extrapolated. Interpolated models performed much better, especially in diseases with obvious microbiota-related characteristics. Interpolation efficiency decreased as geographic scale increased, indicating a need to build localized baseline and disease models to predict metabolic risks.</abstract><pub>NATURE PUBLISHING GROUP</pub></addata></record>
fulltext fulltext
identifier ISSN: 1078-8956
ispartof NATURE MEDICINE, 2018-10, Vol.24 (10), p.1532-+
issn 1078-8956
language eng
recordid cdi_kuleuven_dspace_123456789_628509
source Lirias (KU Leuven Association); Springer Nature - Complete Springer Journals; Nature
title Regional variation limits applications of healthy gut microbiome reference ranges and disease models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regional%20variation%20limits%20applications%20of%20healthy%20gut%20microbiome%20reference%20ranges%20and%20disease%20models&rft.jtitle=NATURE%20MEDICINE&rft.au=He,%20Yan&rft.date=2018-10&rft.volume=24&rft.issue=10&rft.spage=1532&rft.epage=+&rft.pages=1532-+&rft.issn=1078-8956&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_628509%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true