Forward Asteroseismic Modeling of Stars with a Convective Core from Gravity-mode Oscillations: Parameter Estimation and Stellar Model Selection

© 2018. The American Astronomical Society. All rights reserved.. We propose a methodological framework to perform forward asteroseismic modeling of stars with a convective core, based on gravity-mode oscillations. These probe the near-core region in the deep stellar interior. The modeling relies on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical Journal, Supplement Series Supplement Series, 2018-07, Vol.237 (1)
Hauptverfasser: Aerts, C, Molenberghs, G, Michielsen, M, Pedersen, M.G, Björklund, R, Johnston, C, Mombarg, J.S.G, Bowman, D.M, Buysschaert, B, Pápics, P.I, Sekaran, S, Sundqvist, J.O, Tkachenko, A, Truyaert, Kevin, Reeth, T.V, Vermeyen, E
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Astrophysical Journal, Supplement Series
container_volume 237
creator Aerts, C
Molenberghs, G
Michielsen, M
Pedersen, M.G
Björklund, R
Johnston, C
Mombarg, J.S.G
Bowman, D.M
Buysschaert, B
Pápics, P.I
Sekaran, S
Sundqvist, J.O
Tkachenko, A
Truyaert, Kevin
Reeth, T.V
Vermeyen, E
description © 2018. The American Astronomical Society. All rights reserved.. We propose a methodological framework to perform forward asteroseismic modeling of stars with a convective core, based on gravity-mode oscillations. These probe the near-core region in the deep stellar interior. The modeling relies on a set of observed high-precision oscillation frequencies of low-degree coherent gravity modes with long lifetimes and their observational uncertainties. Identification of the mode degree and azimuthal order is assumed to be achieved from rotational splitting and/or from period spacing patterns. This paper has two major outcomes. The first is a comprehensive list and discussion of the major uncertainties of theoretically predicted gravity-mode oscillation frequencies based on linear pulsation theory, caused by fixing choices of the input physics for evolutionary models. Guided by a hierarchy among these uncertainties of theoretical frequencies, we subsequently provide a global methodological scheme to achieve forward asteroseismic modeling. We properly take into account correlations among the free parameters included in stellar models. Aside from the stellar mass, metallicity, and age, the major parameters to be estimated are the near-core rotation rate, the amount of convective core overshooting, and the level of chemical mixing in the radiative zones. This modeling scheme allows for maximum likelihood estimation of the stellar parameters for fixed input physics of the equilibrium models, followed by stellar model selection considering various choices of the input physics. Our approach uses the Mahalanobis distance instead of the often-used χ 2 statistic and includes heteroscedasticity. It provides estimation of the unknown variance of the theoretically predicted oscillation frequencies.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_626122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_626122</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6261223</originalsourceid><addsrcrecordid>eNqNjb1Ow0AQhK8AKSHwDttRIEsXO7ExHYoS0iCQQm-t7HVy4X7Q7sWBp-CVuQAPkGpGo5lvLtRY67LKtJ7VI3UlstdaV_OiHqvvVeAjcgePEomDkBFnWngOHVnjtxB62ERkgaOJO0BYBD9QG81AyTJBz8HBE-Ng4lfm0gpepDXWYjTBywO8IqOjhIalRON-Y0DfJSqlFv89wYbsiRr8tbrs0Qrd_OtE3a6Wb4t19n6wdBjIN518YEvNNC9m87K6r5syL6d5XkzU3XnNJn7G4nzuD2GgZGE</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forward Asteroseismic Modeling of Stars with a Convective Core from Gravity-mode Oscillations: Parameter Estimation and Stellar Model Selection</title><source>IOP Publishing Free Content</source><source>Lirias (KU Leuven Association)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><creator>Aerts, C ; Molenberghs, G ; Michielsen, M ; Pedersen, M.G ; Björklund, R ; Johnston, C ; Mombarg, J.S.G ; Bowman, D.M ; Buysschaert, B ; Pápics, P.I ; Sekaran, S ; Sundqvist, J.O ; Tkachenko, A ; Truyaert, Kevin ; Reeth, T.V ; Vermeyen, E</creator><creatorcontrib>Aerts, C ; Molenberghs, G ; Michielsen, M ; Pedersen, M.G ; Björklund, R ; Johnston, C ; Mombarg, J.S.G ; Bowman, D.M ; Buysschaert, B ; Pápics, P.I ; Sekaran, S ; Sundqvist, J.O ; Tkachenko, A ; Truyaert, Kevin ; Reeth, T.V ; Vermeyen, E</creatorcontrib><description>© 2018. The American Astronomical Society. All rights reserved.. We propose a methodological framework to perform forward asteroseismic modeling of stars with a convective core, based on gravity-mode oscillations. These probe the near-core region in the deep stellar interior. The modeling relies on a set of observed high-precision oscillation frequencies of low-degree coherent gravity modes with long lifetimes and their observational uncertainties. Identification of the mode degree and azimuthal order is assumed to be achieved from rotational splitting and/or from period spacing patterns. This paper has two major outcomes. The first is a comprehensive list and discussion of the major uncertainties of theoretically predicted gravity-mode oscillation frequencies based on linear pulsation theory, caused by fixing choices of the input physics for evolutionary models. Guided by a hierarchy among these uncertainties of theoretical frequencies, we subsequently provide a global methodological scheme to achieve forward asteroseismic modeling. We properly take into account correlations among the free parameters included in stellar models. Aside from the stellar mass, metallicity, and age, the major parameters to be estimated are the near-core rotation rate, the amount of convective core overshooting, and the level of chemical mixing in the radiative zones. This modeling scheme allows for maximum likelihood estimation of the stellar parameters for fixed input physics of the equilibrium models, followed by stellar model selection considering various choices of the input physics. Our approach uses the Mahalanobis distance instead of the often-used χ 2 statistic and includes heteroscedasticity. It provides estimation of the unknown variance of the theoretically predicted oscillation frequencies.</description><identifier>ISSN: 0067-0049</identifier><language>eng</language><publisher>IOP PUBLISHING LTD</publisher><ispartof>Astrophysical Journal, Supplement Series, 2018-07, Vol.237 (1)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,27839</link.rule.ids></links><search><creatorcontrib>Aerts, C</creatorcontrib><creatorcontrib>Molenberghs, G</creatorcontrib><creatorcontrib>Michielsen, M</creatorcontrib><creatorcontrib>Pedersen, M.G</creatorcontrib><creatorcontrib>Björklund, R</creatorcontrib><creatorcontrib>Johnston, C</creatorcontrib><creatorcontrib>Mombarg, J.S.G</creatorcontrib><creatorcontrib>Bowman, D.M</creatorcontrib><creatorcontrib>Buysschaert, B</creatorcontrib><creatorcontrib>Pápics, P.I</creatorcontrib><creatorcontrib>Sekaran, S</creatorcontrib><creatorcontrib>Sundqvist, J.O</creatorcontrib><creatorcontrib>Tkachenko, A</creatorcontrib><creatorcontrib>Truyaert, Kevin</creatorcontrib><creatorcontrib>Reeth, T.V</creatorcontrib><creatorcontrib>Vermeyen, E</creatorcontrib><title>Forward Asteroseismic Modeling of Stars with a Convective Core from Gravity-mode Oscillations: Parameter Estimation and Stellar Model Selection</title><title>Astrophysical Journal, Supplement Series</title><description>© 2018. The American Astronomical Society. All rights reserved.. We propose a methodological framework to perform forward asteroseismic modeling of stars with a convective core, based on gravity-mode oscillations. These probe the near-core region in the deep stellar interior. The modeling relies on a set of observed high-precision oscillation frequencies of low-degree coherent gravity modes with long lifetimes and their observational uncertainties. Identification of the mode degree and azimuthal order is assumed to be achieved from rotational splitting and/or from period spacing patterns. This paper has two major outcomes. The first is a comprehensive list and discussion of the major uncertainties of theoretically predicted gravity-mode oscillation frequencies based on linear pulsation theory, caused by fixing choices of the input physics for evolutionary models. Guided by a hierarchy among these uncertainties of theoretical frequencies, we subsequently provide a global methodological scheme to achieve forward asteroseismic modeling. We properly take into account correlations among the free parameters included in stellar models. Aside from the stellar mass, metallicity, and age, the major parameters to be estimated are the near-core rotation rate, the amount of convective core overshooting, and the level of chemical mixing in the radiative zones. This modeling scheme allows for maximum likelihood estimation of the stellar parameters for fixed input physics of the equilibrium models, followed by stellar model selection considering various choices of the input physics. Our approach uses the Mahalanobis distance instead of the often-used χ 2 statistic and includes heteroscedasticity. It provides estimation of the unknown variance of the theoretically predicted oscillation frequencies.</description><issn>0067-0049</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNjb1Ow0AQhK8AKSHwDttRIEsXO7ExHYoS0iCQQm-t7HVy4X7Q7sWBp-CVuQAPkGpGo5lvLtRY67LKtJ7VI3UlstdaV_OiHqvvVeAjcgePEomDkBFnWngOHVnjtxB62ERkgaOJO0BYBD9QG81AyTJBz8HBE-Ng4lfm0gpepDXWYjTBywO8IqOjhIalRON-Y0DfJSqlFv89wYbsiRr8tbrs0Qrd_OtE3a6Wb4t19n6wdBjIN518YEvNNC9m87K6r5syL6d5XkzU3XnNJn7G4nzuD2GgZGE</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Aerts, C</creator><creator>Molenberghs, G</creator><creator>Michielsen, M</creator><creator>Pedersen, M.G</creator><creator>Björklund, R</creator><creator>Johnston, C</creator><creator>Mombarg, J.S.G</creator><creator>Bowman, D.M</creator><creator>Buysschaert, B</creator><creator>Pápics, P.I</creator><creator>Sekaran, S</creator><creator>Sundqvist, J.O</creator><creator>Tkachenko, A</creator><creator>Truyaert, Kevin</creator><creator>Reeth, T.V</creator><creator>Vermeyen, E</creator><general>IOP PUBLISHING LTD</general><scope>FZOIL</scope></search><sort><creationdate>20180701</creationdate><title>Forward Asteroseismic Modeling of Stars with a Convective Core from Gravity-mode Oscillations: Parameter Estimation and Stellar Model Selection</title><author>Aerts, C ; Molenberghs, G ; Michielsen, M ; Pedersen, M.G ; Björklund, R ; Johnston, C ; Mombarg, J.S.G ; Bowman, D.M ; Buysschaert, B ; Pápics, P.I ; Sekaran, S ; Sundqvist, J.O ; Tkachenko, A ; Truyaert, Kevin ; Reeth, T.V ; Vermeyen, E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6261223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aerts, C</creatorcontrib><creatorcontrib>Molenberghs, G</creatorcontrib><creatorcontrib>Michielsen, M</creatorcontrib><creatorcontrib>Pedersen, M.G</creatorcontrib><creatorcontrib>Björklund, R</creatorcontrib><creatorcontrib>Johnston, C</creatorcontrib><creatorcontrib>Mombarg, J.S.G</creatorcontrib><creatorcontrib>Bowman, D.M</creatorcontrib><creatorcontrib>Buysschaert, B</creatorcontrib><creatorcontrib>Pápics, P.I</creatorcontrib><creatorcontrib>Sekaran, S</creatorcontrib><creatorcontrib>Sundqvist, J.O</creatorcontrib><creatorcontrib>Tkachenko, A</creatorcontrib><creatorcontrib>Truyaert, Kevin</creatorcontrib><creatorcontrib>Reeth, T.V</creatorcontrib><creatorcontrib>Vermeyen, E</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Astrophysical Journal, Supplement Series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aerts, C</au><au>Molenberghs, G</au><au>Michielsen, M</au><au>Pedersen, M.G</au><au>Björklund, R</au><au>Johnston, C</au><au>Mombarg, J.S.G</au><au>Bowman, D.M</au><au>Buysschaert, B</au><au>Pápics, P.I</au><au>Sekaran, S</au><au>Sundqvist, J.O</au><au>Tkachenko, A</au><au>Truyaert, Kevin</au><au>Reeth, T.V</au><au>Vermeyen, E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forward Asteroseismic Modeling of Stars with a Convective Core from Gravity-mode Oscillations: Parameter Estimation and Stellar Model Selection</atitle><jtitle>Astrophysical Journal, Supplement Series</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>237</volume><issue>1</issue><issn>0067-0049</issn><abstract>© 2018. The American Astronomical Society. All rights reserved.. We propose a methodological framework to perform forward asteroseismic modeling of stars with a convective core, based on gravity-mode oscillations. These probe the near-core region in the deep stellar interior. The modeling relies on a set of observed high-precision oscillation frequencies of low-degree coherent gravity modes with long lifetimes and their observational uncertainties. Identification of the mode degree and azimuthal order is assumed to be achieved from rotational splitting and/or from period spacing patterns. This paper has two major outcomes. The first is a comprehensive list and discussion of the major uncertainties of theoretically predicted gravity-mode oscillation frequencies based on linear pulsation theory, caused by fixing choices of the input physics for evolutionary models. Guided by a hierarchy among these uncertainties of theoretical frequencies, we subsequently provide a global methodological scheme to achieve forward asteroseismic modeling. We properly take into account correlations among the free parameters included in stellar models. Aside from the stellar mass, metallicity, and age, the major parameters to be estimated are the near-core rotation rate, the amount of convective core overshooting, and the level of chemical mixing in the radiative zones. This modeling scheme allows for maximum likelihood estimation of the stellar parameters for fixed input physics of the equilibrium models, followed by stellar model selection considering various choices of the input physics. Our approach uses the Mahalanobis distance instead of the often-used χ 2 statistic and includes heteroscedasticity. It provides estimation of the unknown variance of the theoretically predicted oscillation frequencies.</abstract><pub>IOP PUBLISHING LTD</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0067-0049
ispartof Astrophysical Journal, Supplement Series, 2018-07, Vol.237 (1)
issn 0067-0049
language eng
recordid cdi_kuleuven_dspace_123456789_626122
source IOP Publishing Free Content; Lirias (KU Leuven Association); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection
title Forward Asteroseismic Modeling of Stars with a Convective Core from Gravity-mode Oscillations: Parameter Estimation and Stellar Model Selection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T20%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forward%20Asteroseismic%20Modeling%20of%20Stars%20with%20a%20Convective%20Core%20from%20Gravity-mode%20Oscillations:%20Parameter%20Estimation%20and%20Stellar%20Model%20Selection&rft.jtitle=Astrophysical%20Journal,%20Supplement%20Series&rft.au=Aerts,%20C&rft.date=2018-07-01&rft.volume=237&rft.issue=1&rft.issn=0067-0049&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_626122%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true