AMIE: Automatic Monitoring of Indoor Exercises
Patients with sports-related injuries need to learn to perform rehabilitative exercises with correct movement patterns. Unfortunately, the feedback a physiotherapist can provide is limited by the visitation frequency of the patient. We study the feasibility of a system that automatically provides fe...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 439 |
---|---|
container_issue | |
container_start_page | 424 |
container_title | |
container_volume | 11053 |
creator | Decroos, Tom Schütte, Kurt Op De Beéck, Tim Vanwanseele, Benedicte Davis, Jesse |
description | Patients with sports-related injuries need to learn to perform rehabilitative exercises with correct movement patterns. Unfortunately, the feedback a physiotherapist can provide is limited by the visitation frequency of the patient. We study the feasibility of a system that automatically provides feedback on correct movement patterns to patients using a Microsoft Kinect camera and Machine Learning techniques. We discuss several challenges related to the Kinect's proprietary software, the Kinect data's heterogeneity, and the Kinect data's temporal component. We introduce AMIE, a machine learning pipeline that detects the exercise being performed, the exercise's correctness, and if applicable, the mistake that was made. To evaluate AMIE, ten participants were instructed to perform three types of typical rehabilitation exercises (squats, forward lunges and side lunges) demonstrating both correct movement patterns and frequent types of mistakes, while being recorded with a Kinect. AMIE detects the type of exercise almost perfectly with 99% accuracy and the type of mistake with 73% accuracy. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_625914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_625914</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6259143</originalsourceid><addsrcrecordid>eNqVyj0OgjAAQOEmaiIqd-jmYDD9ocW6EYORgY29aaCYKraGFsPxdfAAOr03fDOwoogijITI-BxEnyeJyFK6BLH3N4QQwZgzJiKwz6uyOMJ8DO6hgmlg5awJbjD2Cl0HS9s6N8Bi0kNjvPYbsOhU73X87Rpsz0V9uiT3sdfjS1vZ-qdqtMSEpoxnByE5YQKn9B-5-03KMAX6BiyOQl0</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>AMIE: Automatic Monitoring of Indoor Exercises</title><source>Lirias (KU Leuven Association)</source><source>Springer Books</source><creator>Decroos, Tom ; Schütte, Kurt ; Op De Beéck, Tim ; Vanwanseele, Benedicte ; Davis, Jesse</creator><contributor>MacNamee, B ; Berlingerio, M ; Daly, E ; Pinelli, F ; Brefeld, U ; Marascu, A ; Hurley, N ; Curry, E</contributor><creatorcontrib>Decroos, Tom ; Schütte, Kurt ; Op De Beéck, Tim ; Vanwanseele, Benedicte ; Davis, Jesse ; MacNamee, B ; Berlingerio, M ; Daly, E ; Pinelli, F ; Brefeld, U ; Marascu, A ; Hurley, N ; Curry, E</creatorcontrib><description>Patients with sports-related injuries need to learn to perform rehabilitative exercises with correct movement patterns. Unfortunately, the feedback a physiotherapist can provide is limited by the visitation frequency of the patient. We study the feasibility of a system that automatically provides feedback on correct movement patterns to patients using a Microsoft Kinect camera and Machine Learning techniques. We discuss several challenges related to the Kinect's proprietary software, the Kinect data's heterogeneity, and the Kinect data's temporal component. We introduce AMIE, a machine learning pipeline that detects the exercise being performed, the exercise's correctness, and if applicable, the mistake that was made. To evaluate AMIE, ten participants were instructed to perform three types of typical rehabilitation exercises (squats, forward lunges and side lunges) demonstrating both correct movement patterns and frequent types of mistakes, while being recorded with a Kinect. AMIE detects the type of exercise almost perfectly with 99% accuracy and the type of mistake with 73% accuracy.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3030109976</identifier><identifier>ISBN: 9783030109974</identifier><language>eng</language><publisher>Springer</publisher><ispartof>Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2018, Vol.11053, p.424-439</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,315,776,780,785,786,27839</link.rule.ids></links><search><contributor>MacNamee, B</contributor><contributor>Berlingerio, M</contributor><contributor>Daly, E</contributor><contributor>Pinelli, F</contributor><contributor>Brefeld, U</contributor><contributor>Marascu, A</contributor><contributor>Hurley, N</contributor><contributor>Curry, E</contributor><creatorcontrib>Decroos, Tom</creatorcontrib><creatorcontrib>Schütte, Kurt</creatorcontrib><creatorcontrib>Op De Beéck, Tim</creatorcontrib><creatorcontrib>Vanwanseele, Benedicte</creatorcontrib><creatorcontrib>Davis, Jesse</creatorcontrib><title>AMIE: Automatic Monitoring of Indoor Exercises</title><title>Joint European Conference on Machine Learning and Knowledge Discovery in Databases</title><description>Patients with sports-related injuries need to learn to perform rehabilitative exercises with correct movement patterns. Unfortunately, the feedback a physiotherapist can provide is limited by the visitation frequency of the patient. We study the feasibility of a system that automatically provides feedback on correct movement patterns to patients using a Microsoft Kinect camera and Machine Learning techniques. We discuss several challenges related to the Kinect's proprietary software, the Kinect data's heterogeneity, and the Kinect data's temporal component. We introduce AMIE, a machine learning pipeline that detects the exercise being performed, the exercise's correctness, and if applicable, the mistake that was made. To evaluate AMIE, ten participants were instructed to perform three types of typical rehabilitation exercises (squats, forward lunges and side lunges) demonstrating both correct movement patterns and frequent types of mistakes, while being recorded with a Kinect. AMIE detects the type of exercise almost perfectly with 99% accuracy and the type of mistake with 73% accuracy.</description><issn>0302-9743</issn><isbn>3030109976</isbn><isbn>9783030109974</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVyj0OgjAAQOEmaiIqd-jmYDD9ocW6EYORgY29aaCYKraGFsPxdfAAOr03fDOwoogijITI-BxEnyeJyFK6BLH3N4QQwZgzJiKwz6uyOMJ8DO6hgmlg5awJbjD2Cl0HS9s6N8Bi0kNjvPYbsOhU73X87Rpsz0V9uiT3sdfjS1vZ-qdqtMSEpoxnByE5YQKn9B-5-03KMAX6BiyOQl0</recordid><startdate>20180910</startdate><enddate>20180910</enddate><creator>Decroos, Tom</creator><creator>Schütte, Kurt</creator><creator>Op De Beéck, Tim</creator><creator>Vanwanseele, Benedicte</creator><creator>Davis, Jesse</creator><general>Springer</general><scope>FZOIL</scope></search><sort><creationdate>20180910</creationdate><title>AMIE: Automatic Monitoring of Indoor Exercises</title><author>Decroos, Tom ; Schütte, Kurt ; Op De Beéck, Tim ; Vanwanseele, Benedicte ; Davis, Jesse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6259143</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Decroos, Tom</creatorcontrib><creatorcontrib>Schütte, Kurt</creatorcontrib><creatorcontrib>Op De Beéck, Tim</creatorcontrib><creatorcontrib>Vanwanseele, Benedicte</creatorcontrib><creatorcontrib>Davis, Jesse</creatorcontrib><collection>Lirias (KU Leuven Association)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Decroos, Tom</au><au>Schütte, Kurt</au><au>Op De Beéck, Tim</au><au>Vanwanseele, Benedicte</au><au>Davis, Jesse</au><au>MacNamee, B</au><au>Berlingerio, M</au><au>Daly, E</au><au>Pinelli, F</au><au>Brefeld, U</au><au>Marascu, A</au><au>Hurley, N</au><au>Curry, E</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>AMIE: Automatic Monitoring of Indoor Exercises</atitle><btitle>Joint European Conference on Machine Learning and Knowledge Discovery in Databases</btitle><date>2018-09-10</date><risdate>2018</risdate><volume>11053</volume><spage>424</spage><epage>439</epage><pages>424-439</pages><issn>0302-9743</issn><isbn>3030109976</isbn><isbn>9783030109974</isbn><abstract>Patients with sports-related injuries need to learn to perform rehabilitative exercises with correct movement patterns. Unfortunately, the feedback a physiotherapist can provide is limited by the visitation frequency of the patient. We study the feasibility of a system that automatically provides feedback on correct movement patterns to patients using a Microsoft Kinect camera and Machine Learning techniques. We discuss several challenges related to the Kinect's proprietary software, the Kinect data's heterogeneity, and the Kinect data's temporal component. We introduce AMIE, a machine learning pipeline that detects the exercise being performed, the exercise's correctness, and if applicable, the mistake that was made. To evaluate AMIE, ten participants were instructed to perform three types of typical rehabilitation exercises (squats, forward lunges and side lunges) demonstrating both correct movement patterns and frequent types of mistakes, while being recorded with a Kinect. AMIE detects the type of exercise almost perfectly with 99% accuracy and the type of mistake with 73% accuracy.</abstract><pub>Springer</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0302-9743 |
ispartof | Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2018, Vol.11053, p.424-439 |
issn | 0302-9743 |
language | eng |
recordid | cdi_kuleuven_dspace_123456789_625914 |
source | Lirias (KU Leuven Association); Springer Books |
title | AMIE: Automatic Monitoring of Indoor Exercises |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T22%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=AMIE:%20Automatic%20Monitoring%20of%20Indoor%20Exercises&rft.btitle=Joint%20European%20Conference%20on%20Machine%20Learning%20and%20Knowledge%20Discovery%20in%20Databases&rft.au=Decroos,%20Tom&rft.date=2018-09-10&rft.volume=11053&rft.spage=424&rft.epage=439&rft.pages=424-439&rft.issn=0302-9743&rft.isbn=3030109976&rft.isbn_list=9783030109974&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_625914%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |