AMIE: Automatic Monitoring of Indoor Exercises

Patients with sports-related injuries need to learn to perform rehabilitative exercises with correct movement patterns. Unfortunately, the feedback a physiotherapist can provide is limited by the visitation frequency of the patient. We study the feasibility of a system that automatically provides fe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Decroos, Tom, Schütte, Kurt, Op De Beéck, Tim, Vanwanseele, Benedicte, Davis, Jesse
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 439
container_issue
container_start_page 424
container_title
container_volume 11053
creator Decroos, Tom
Schütte, Kurt
Op De Beéck, Tim
Vanwanseele, Benedicte
Davis, Jesse
description Patients with sports-related injuries need to learn to perform rehabilitative exercises with correct movement patterns. Unfortunately, the feedback a physiotherapist can provide is limited by the visitation frequency of the patient. We study the feasibility of a system that automatically provides feedback on correct movement patterns to patients using a Microsoft Kinect camera and Machine Learning techniques. We discuss several challenges related to the Kinect's proprietary software, the Kinect data's heterogeneity, and the Kinect data's temporal component. We introduce AMIE, a machine learning pipeline that detects the exercise being performed, the exercise's correctness, and if applicable, the mistake that was made. To evaluate AMIE, ten participants were instructed to perform three types of typical rehabilitation exercises (squats, forward lunges and side lunges) demonstrating both correct movement patterns and frequent types of mistakes, while being recorded with a Kinect. AMIE detects the type of exercise almost perfectly with 99% accuracy and the type of mistake with 73% accuracy.
format Conference Proceeding
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_625914</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_625914</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6259143</originalsourceid><addsrcrecordid>eNqVyj0OgjAAQOEmaiIqd-jmYDD9ocW6EYORgY29aaCYKraGFsPxdfAAOr03fDOwoogijITI-BxEnyeJyFK6BLH3N4QQwZgzJiKwz6uyOMJ8DO6hgmlg5awJbjD2Cl0HS9s6N8Bi0kNjvPYbsOhU73X87Rpsz0V9uiT3sdfjS1vZ-qdqtMSEpoxnByE5YQKn9B-5-03KMAX6BiyOQl0</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>AMIE: Automatic Monitoring of Indoor Exercises</title><source>Lirias (KU Leuven Association)</source><source>Springer Books</source><creator>Decroos, Tom ; Schütte, Kurt ; Op De Beéck, Tim ; Vanwanseele, Benedicte ; Davis, Jesse</creator><contributor>MacNamee, B ; Berlingerio, M ; Daly, E ; Pinelli, F ; Brefeld, U ; Marascu, A ; Hurley, N ; Curry, E</contributor><creatorcontrib>Decroos, Tom ; Schütte, Kurt ; Op De Beéck, Tim ; Vanwanseele, Benedicte ; Davis, Jesse ; MacNamee, B ; Berlingerio, M ; Daly, E ; Pinelli, F ; Brefeld, U ; Marascu, A ; Hurley, N ; Curry, E</creatorcontrib><description>Patients with sports-related injuries need to learn to perform rehabilitative exercises with correct movement patterns. Unfortunately, the feedback a physiotherapist can provide is limited by the visitation frequency of the patient. We study the feasibility of a system that automatically provides feedback on correct movement patterns to patients using a Microsoft Kinect camera and Machine Learning techniques. We discuss several challenges related to the Kinect's proprietary software, the Kinect data's heterogeneity, and the Kinect data's temporal component. We introduce AMIE, a machine learning pipeline that detects the exercise being performed, the exercise's correctness, and if applicable, the mistake that was made. To evaluate AMIE, ten participants were instructed to perform three types of typical rehabilitation exercises (squats, forward lunges and side lunges) demonstrating both correct movement patterns and frequent types of mistakes, while being recorded with a Kinect. AMIE detects the type of exercise almost perfectly with 99% accuracy and the type of mistake with 73% accuracy.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3030109976</identifier><identifier>ISBN: 9783030109974</identifier><language>eng</language><publisher>Springer</publisher><ispartof>Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2018, Vol.11053, p.424-439</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,315,776,780,785,786,27839</link.rule.ids></links><search><contributor>MacNamee, B</contributor><contributor>Berlingerio, M</contributor><contributor>Daly, E</contributor><contributor>Pinelli, F</contributor><contributor>Brefeld, U</contributor><contributor>Marascu, A</contributor><contributor>Hurley, N</contributor><contributor>Curry, E</contributor><creatorcontrib>Decroos, Tom</creatorcontrib><creatorcontrib>Schütte, Kurt</creatorcontrib><creatorcontrib>Op De Beéck, Tim</creatorcontrib><creatorcontrib>Vanwanseele, Benedicte</creatorcontrib><creatorcontrib>Davis, Jesse</creatorcontrib><title>AMIE: Automatic Monitoring of Indoor Exercises</title><title>Joint European Conference on Machine Learning and Knowledge Discovery in Databases</title><description>Patients with sports-related injuries need to learn to perform rehabilitative exercises with correct movement patterns. Unfortunately, the feedback a physiotherapist can provide is limited by the visitation frequency of the patient. We study the feasibility of a system that automatically provides feedback on correct movement patterns to patients using a Microsoft Kinect camera and Machine Learning techniques. We discuss several challenges related to the Kinect's proprietary software, the Kinect data's heterogeneity, and the Kinect data's temporal component. We introduce AMIE, a machine learning pipeline that detects the exercise being performed, the exercise's correctness, and if applicable, the mistake that was made. To evaluate AMIE, ten participants were instructed to perform three types of typical rehabilitation exercises (squats, forward lunges and side lunges) demonstrating both correct movement patterns and frequent types of mistakes, while being recorded with a Kinect. AMIE detects the type of exercise almost perfectly with 99% accuracy and the type of mistake with 73% accuracy.</description><issn>0302-9743</issn><isbn>3030109976</isbn><isbn>9783030109974</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2018</creationdate><recordtype>conference_proceeding</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVyj0OgjAAQOEmaiIqd-jmYDD9ocW6EYORgY29aaCYKraGFsPxdfAAOr03fDOwoogijITI-BxEnyeJyFK6BLH3N4QQwZgzJiKwz6uyOMJ8DO6hgmlg5awJbjD2Cl0HS9s6N8Bi0kNjvPYbsOhU73X87Rpsz0V9uiT3sdfjS1vZ-qdqtMSEpoxnByE5YQKn9B-5-03KMAX6BiyOQl0</recordid><startdate>20180910</startdate><enddate>20180910</enddate><creator>Decroos, Tom</creator><creator>Schütte, Kurt</creator><creator>Op De Beéck, Tim</creator><creator>Vanwanseele, Benedicte</creator><creator>Davis, Jesse</creator><general>Springer</general><scope>FZOIL</scope></search><sort><creationdate>20180910</creationdate><title>AMIE: Automatic Monitoring of Indoor Exercises</title><author>Decroos, Tom ; Schütte, Kurt ; Op De Beéck, Tim ; Vanwanseele, Benedicte ; Davis, Jesse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6259143</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Decroos, Tom</creatorcontrib><creatorcontrib>Schütte, Kurt</creatorcontrib><creatorcontrib>Op De Beéck, Tim</creatorcontrib><creatorcontrib>Vanwanseele, Benedicte</creatorcontrib><creatorcontrib>Davis, Jesse</creatorcontrib><collection>Lirias (KU Leuven Association)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Decroos, Tom</au><au>Schütte, Kurt</au><au>Op De Beéck, Tim</au><au>Vanwanseele, Benedicte</au><au>Davis, Jesse</au><au>MacNamee, B</au><au>Berlingerio, M</au><au>Daly, E</au><au>Pinelli, F</au><au>Brefeld, U</au><au>Marascu, A</au><au>Hurley, N</au><au>Curry, E</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>AMIE: Automatic Monitoring of Indoor Exercises</atitle><btitle>Joint European Conference on Machine Learning and Knowledge Discovery in Databases</btitle><date>2018-09-10</date><risdate>2018</risdate><volume>11053</volume><spage>424</spage><epage>439</epage><pages>424-439</pages><issn>0302-9743</issn><isbn>3030109976</isbn><isbn>9783030109974</isbn><abstract>Patients with sports-related injuries need to learn to perform rehabilitative exercises with correct movement patterns. Unfortunately, the feedback a physiotherapist can provide is limited by the visitation frequency of the patient. We study the feasibility of a system that automatically provides feedback on correct movement patterns to patients using a Microsoft Kinect camera and Machine Learning techniques. We discuss several challenges related to the Kinect's proprietary software, the Kinect data's heterogeneity, and the Kinect data's temporal component. We introduce AMIE, a machine learning pipeline that detects the exercise being performed, the exercise's correctness, and if applicable, the mistake that was made. To evaluate AMIE, ten participants were instructed to perform three types of typical rehabilitation exercises (squats, forward lunges and side lunges) demonstrating both correct movement patterns and frequent types of mistakes, while being recorded with a Kinect. AMIE detects the type of exercise almost perfectly with 99% accuracy and the type of mistake with 73% accuracy.</abstract><pub>Springer</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Joint European Conference on Machine Learning and Knowledge Discovery in Databases, 2018, Vol.11053, p.424-439
issn 0302-9743
language eng
recordid cdi_kuleuven_dspace_123456789_625914
source Lirias (KU Leuven Association); Springer Books
title AMIE: Automatic Monitoring of Indoor Exercises
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T22%3A18%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=AMIE:%20Automatic%20Monitoring%20of%20Indoor%20Exercises&rft.btitle=Joint%20European%20Conference%20on%20Machine%20Learning%20and%20Knowledge%20Discovery%20in%20Databases&rft.au=Decroos,%20Tom&rft.date=2018-09-10&rft.volume=11053&rft.spage=424&rft.epage=439&rft.pages=424-439&rft.issn=0302-9743&rft.isbn=3030109976&rft.isbn_list=9783030109974&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_625914%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true