Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle

© 2017, Institute of Mathematics. All rights reserved. Orthogonal rational functions (ORF) on the unit circle generalize orthogonal polynomials (poles at infinity) and Laurent polynomials (poles at zero and infinity). In this paper we investigate the properties of and the relation between these ORF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS 2017-01, Vol.13
Hauptverfasser: Bultheel, Adhemar, Cruz Barroso, R, Lasarow, Andreas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS
container_volume 13
creator Bultheel, Adhemar
Cruz Barroso, R
Lasarow, Andreas
description © 2017, Institute of Mathematics. All rights reserved. Orthogonal rational functions (ORF) on the unit circle generalize orthogonal polynomials (poles at infinity) and Laurent polynomials (poles at zero and infinity). In this paper we investigate the properties of and the relation between these ORF when the poles are all outside or all inside the unit disk, or when they can be anywhere in the extended complex plane outside the unit circle. Some properties of matrices that are the product of elementary unitary transformations will be proved and some connections with related algorithms for direct and inverse eigenvalue problems will be explained.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_601254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_601254</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6012543</originalsourceid><addsrcrecordid>eNqVyr0KwjAUQOEgCtafd7ibgxTSNontXCxuiugopbZXGw2JNKn6-KI4ODjodL7hdIgXxAH3qeBJ98N9MrD2RCkTTFCP7JaNq83R6ELBunDyhazV5ZMWjAZXI2y1dJDKplQIN-lqWDVoy0busYKVUWhBG_dlHpHeoVAWx-8OySSbb9KFf24VtlfUeWUvRYl5EEaMi1mc5IIGIWfRP-f0tzN3dxc9AJfaUvk</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle</title><source>Math-Net.Ru (free access)</source><source>Lirias (KU Leuven Association)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bultheel, Adhemar ; Cruz Barroso, R ; Lasarow, Andreas</creator><creatorcontrib>Bultheel, Adhemar ; Cruz Barroso, R ; Lasarow, Andreas</creatorcontrib><description>© 2017, Institute of Mathematics. All rights reserved. Orthogonal rational functions (ORF) on the unit circle generalize orthogonal polynomials (poles at infinity) and Laurent polynomials (poles at zero and infinity). In this paper we investigate the properties of and the relation between these ORF when the poles are all outside or all inside the unit disk, or when they can be anywhere in the extended complex plane outside the unit circle. Some properties of matrices that are the product of elementary unitary transformations will be proved and some connections with related algorithms for direct and inverse eigenvalue problems will be explained.</description><identifier>ISSN: 1815-0659</identifier><identifier>EISSN: 1815-0659</identifier><language>eng</language><publisher>NATL ACAD SCI UKRAINE, INST MATH</publisher><ispartof>SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2017-01, Vol.13</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,27860</link.rule.ids></links><search><creatorcontrib>Bultheel, Adhemar</creatorcontrib><creatorcontrib>Cruz Barroso, R</creatorcontrib><creatorcontrib>Lasarow, Andreas</creatorcontrib><title>Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle</title><title>SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS</title><description>© 2017, Institute of Mathematics. All rights reserved. Orthogonal rational functions (ORF) on the unit circle generalize orthogonal polynomials (poles at infinity) and Laurent polynomials (poles at zero and infinity). In this paper we investigate the properties of and the relation between these ORF when the poles are all outside or all inside the unit disk, or when they can be anywhere in the extended complex plane outside the unit circle. Some properties of matrices that are the product of elementary unitary transformations will be proved and some connections with related algorithms for direct and inverse eigenvalue problems will be explained.</description><issn>1815-0659</issn><issn>1815-0659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVyr0KwjAUQOEgCtafd7ibgxTSNontXCxuiugopbZXGw2JNKn6-KI4ODjodL7hdIgXxAH3qeBJ98N9MrD2RCkTTFCP7JaNq83R6ELBunDyhazV5ZMWjAZXI2y1dJDKplQIN-lqWDVoy0busYKVUWhBG_dlHpHeoVAWx-8OySSbb9KFf24VtlfUeWUvRYl5EEaMi1mc5IIGIWfRP-f0tzN3dxc9AJfaUvk</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Bultheel, Adhemar</creator><creator>Cruz Barroso, R</creator><creator>Lasarow, Andreas</creator><general>NATL ACAD SCI UKRAINE, INST MATH</general><scope>FZOIL</scope></search><sort><creationdate>20170101</creationdate><title>Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle</title><author>Bultheel, Adhemar ; Cruz Barroso, R ; Lasarow, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6012543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bultheel, Adhemar</creatorcontrib><creatorcontrib>Cruz Barroso, R</creatorcontrib><creatorcontrib>Lasarow, Andreas</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bultheel, Adhemar</au><au>Cruz Barroso, R</au><au>Lasarow, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle</atitle><jtitle>SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>13</volume><issn>1815-0659</issn><eissn>1815-0659</eissn><abstract>© 2017, Institute of Mathematics. All rights reserved. Orthogonal rational functions (ORF) on the unit circle generalize orthogonal polynomials (poles at infinity) and Laurent polynomials (poles at zero and infinity). In this paper we investigate the properties of and the relation between these ORF when the poles are all outside or all inside the unit disk, or when they can be anywhere in the extended complex plane outside the unit circle. Some properties of matrices that are the product of elementary unitary transformations will be proved and some connections with related algorithms for direct and inverse eigenvalue problems will be explained.</abstract><pub>NATL ACAD SCI UKRAINE, INST MATH</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1815-0659
ispartof SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2017-01, Vol.13
issn 1815-0659
1815-0659
language eng
recordid cdi_kuleuven_dspace_123456789_601254
source Math-Net.Ru (free access); Lirias (KU Leuven Association); EZB-FREE-00999 freely available EZB journals
title Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20Rational%20Functions%20on%20the%20Unit%20Circle%20with%20Prescribed%20Poles%20not%20on%20the%20Unit%20Circle&rft.jtitle=SYMMETRY%20INTEGRABILITY%20AND%20GEOMETRY-METHODS%20AND%20APPLICATIONS&rft.au=Bultheel,%20Adhemar&rft.date=2017-01-01&rft.volume=13&rft.issn=1815-0659&rft.eissn=1815-0659&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_601254%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true