Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle
© 2017, Institute of Mathematics. All rights reserved. Orthogonal rational functions (ORF) on the unit circle generalize orthogonal polynomials (poles at infinity) and Laurent polynomials (poles at zero and infinity). In this paper we investigate the properties of and the relation between these ORF...
Gespeichert in:
Veröffentlicht in: | SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS 2017-01, Vol.13 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS |
container_volume | 13 |
creator | Bultheel, Adhemar Cruz Barroso, R Lasarow, Andreas |
description | © 2017, Institute of Mathematics. All rights reserved. Orthogonal rational functions (ORF) on the unit circle generalize orthogonal polynomials (poles at infinity) and Laurent polynomials (poles at zero and infinity). In this paper we investigate the properties of and the relation between these ORF when the poles are all outside or all inside the unit disk, or when they can be anywhere in the extended complex plane outside the unit circle. Some properties of matrices that are the product of elementary unitary transformations will be proved and some connections with related algorithms for direct and inverse eigenvalue problems will be explained. |
format | Article |
fullrecord | <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_601254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_601254</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_6012543</originalsourceid><addsrcrecordid>eNqVyr0KwjAUQOEgCtafd7ibgxTSNontXCxuiugopbZXGw2JNKn6-KI4ODjodL7hdIgXxAH3qeBJ98N9MrD2RCkTTFCP7JaNq83R6ELBunDyhazV5ZMWjAZXI2y1dJDKplQIN-lqWDVoy0busYKVUWhBG_dlHpHeoVAWx-8OySSbb9KFf24VtlfUeWUvRYl5EEaMi1mc5IIGIWfRP-f0tzN3dxc9AJfaUvk</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle</title><source>Math-Net.Ru (free access)</source><source>Lirias (KU Leuven Association)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bultheel, Adhemar ; Cruz Barroso, R ; Lasarow, Andreas</creator><creatorcontrib>Bultheel, Adhemar ; Cruz Barroso, R ; Lasarow, Andreas</creatorcontrib><description>© 2017, Institute of Mathematics. All rights reserved. Orthogonal rational functions (ORF) on the unit circle generalize orthogonal polynomials (poles at infinity) and Laurent polynomials (poles at zero and infinity). In this paper we investigate the properties of and the relation between these ORF when the poles are all outside or all inside the unit disk, or when they can be anywhere in the extended complex plane outside the unit circle. Some properties of matrices that are the product of elementary unitary transformations will be proved and some connections with related algorithms for direct and inverse eigenvalue problems will be explained.</description><identifier>ISSN: 1815-0659</identifier><identifier>EISSN: 1815-0659</identifier><language>eng</language><publisher>NATL ACAD SCI UKRAINE, INST MATH</publisher><ispartof>SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2017-01, Vol.13</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,27860</link.rule.ids></links><search><creatorcontrib>Bultheel, Adhemar</creatorcontrib><creatorcontrib>Cruz Barroso, R</creatorcontrib><creatorcontrib>Lasarow, Andreas</creatorcontrib><title>Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle</title><title>SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS</title><description>© 2017, Institute of Mathematics. All rights reserved. Orthogonal rational functions (ORF) on the unit circle generalize orthogonal polynomials (poles at infinity) and Laurent polynomials (poles at zero and infinity). In this paper we investigate the properties of and the relation between these ORF when the poles are all outside or all inside the unit disk, or when they can be anywhere in the extended complex plane outside the unit circle. Some properties of matrices that are the product of elementary unitary transformations will be proved and some connections with related algorithms for direct and inverse eigenvalue problems will be explained.</description><issn>1815-0659</issn><issn>1815-0659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVyr0KwjAUQOEgCtafd7ibgxTSNontXCxuiugopbZXGw2JNKn6-KI4ODjodL7hdIgXxAH3qeBJ98N9MrD2RCkTTFCP7JaNq83R6ELBunDyhazV5ZMWjAZXI2y1dJDKplQIN-lqWDVoy0busYKVUWhBG_dlHpHeoVAWx-8OySSbb9KFf24VtlfUeWUvRYl5EEaMi1mc5IIGIWfRP-f0tzN3dxc9AJfaUvk</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Bultheel, Adhemar</creator><creator>Cruz Barroso, R</creator><creator>Lasarow, Andreas</creator><general>NATL ACAD SCI UKRAINE, INST MATH</general><scope>FZOIL</scope></search><sort><creationdate>20170101</creationdate><title>Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle</title><author>Bultheel, Adhemar ; Cruz Barroso, R ; Lasarow, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_6012543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bultheel, Adhemar</creatorcontrib><creatorcontrib>Cruz Barroso, R</creatorcontrib><creatorcontrib>Lasarow, Andreas</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bultheel, Adhemar</au><au>Cruz Barroso, R</au><au>Lasarow, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle</atitle><jtitle>SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>13</volume><issn>1815-0659</issn><eissn>1815-0659</eissn><abstract>© 2017, Institute of Mathematics. All rights reserved. Orthogonal rational functions (ORF) on the unit circle generalize orthogonal polynomials (poles at infinity) and Laurent polynomials (poles at zero and infinity). In this paper we investigate the properties of and the relation between these ORF when the poles are all outside or all inside the unit disk, or when they can be anywhere in the extended complex plane outside the unit circle. Some properties of matrices that are the product of elementary unitary transformations will be proved and some connections with related algorithms for direct and inverse eigenvalue problems will be explained.</abstract><pub>NATL ACAD SCI UKRAINE, INST MATH</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1815-0659 |
ispartof | SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2017-01, Vol.13 |
issn | 1815-0659 1815-0659 |
language | eng |
recordid | cdi_kuleuven_dspace_123456789_601254 |
source | Math-Net.Ru (free access); Lirias (KU Leuven Association); EZB-FREE-00999 freely available EZB journals |
title | Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A01%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orthogonal%20Rational%20Functions%20on%20the%20Unit%20Circle%20with%20Prescribed%20Poles%20not%20on%20the%20Unit%20Circle&rft.jtitle=SYMMETRY%20INTEGRABILITY%20AND%20GEOMETRY-METHODS%20AND%20APPLICATIONS&rft.au=Bultheel,%20Adhemar&rft.date=2017-01-01&rft.volume=13&rft.issn=1815-0659&rft.eissn=1815-0659&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_601254%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |