Efficient evaluation of influenza mitigation strategies using preventive bandits

Pandemic influenza has the epidemiological potential to kill millions of people. While different preventive measures exist, it remains challenging to implement them in an en effective and efficient way. To improve preventive strategies, it is necessary to thoroughly understand the impact of such str...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Libin, Pieter, Verstraeten, Timothy, Theys, Kristof, Roijers, Diederik, Vrancx, Peter, Nowe, Ann
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue
container_start_page 67
container_title
container_volume 10643
creator Libin, Pieter
Verstraeten, Timothy
Theys, Kristof
Roijers, Diederik
Vrancx, Peter
Nowe, Ann
description Pandemic influenza has the epidemiological potential to kill millions of people. While different preventive measures exist, it remains challenging to implement them in an en effective and efficient way. To improve preventive strategies, it is necessary to thoroughly understand the impact of such strategies on the complex dynamics of influenza epidemics. To this end, epidemiological models provide an essential tool to evaluate such strategies in silico. Epidemiological models are frequently used to assist the decision making concern- ing the mitigation of ongoing epidemics. Therefore, rapidly identifying the most promising preventive strategies is crucial to adequately inform public health. To this end, we formulate the evaluation of prevention strategies as a multi- armed bandit problem. The utility of this novel evaluation method is confirmed through experiments in the context of a pandemic influenza model.
format Conference Proceeding
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_584598</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_584598</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_5845983</originalsourceid><addsrcrecordid>eNqVzssKwjAUBNCACtbHP2TnQgpp0lfWUnHpwn2J7U25WtPSJEX8egv6AboaGM7AzMhKiEhmUZrl6ZwETDAeyiwWS7Ky9sYY45nkATkXWmOFYByFUbVeOewM7TRFo1sP5qXoAx02n966QTloECz1Fk1D-wHGaYsj0KsyNTq7IQutWgvbb67J7lhcDqfw7lvwEy5r26sKyoiLOJneyTLJ40Tm4h-5_02W7unEG2zRUI8</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Efficient evaluation of influenza mitigation strategies using preventive bandits</title><source>Lirias (KU Leuven Association)</source><source>Springer Books</source><creator>Libin, Pieter ; Verstraeten, Timothy ; Theys, Kristof ; Roijers, Diederik ; Vrancx, Peter ; Nowe, Ann</creator><creatorcontrib>Libin, Pieter ; Verstraeten, Timothy ; Theys, Kristof ; Roijers, Diederik ; Vrancx, Peter ; Nowe, Ann</creatorcontrib><description>Pandemic influenza has the epidemiological potential to kill millions of people. While different preventive measures exist, it remains challenging to implement them in an en effective and efficient way. To improve preventive strategies, it is necessary to thoroughly understand the impact of such strategies on the complex dynamics of influenza epidemics. To this end, epidemiological models provide an essential tool to evaluate such strategies in silico. Epidemiological models are frequently used to assist the decision making concern- ing the mitigation of ongoing epidemics. Therefore, rapidly identifying the most promising preventive strategies is crucial to adequately inform public health. To this end, we formulate the evaluation of prevention strategies as a multi- armed bandit problem. The utility of this novel evaluation method is confirmed through experiments in the context of a pandemic influenza model.</description><identifier>ISSN: 0302-9743</identifier><identifier>ISBN: 3319716786</identifier><identifier>ISBN: 9783319716787</identifier><language>eng</language><publisher>Springer Verlag</publisher><ispartof>Lecture Notes in Computer Science, 2017, Vol.10643, p.67-85</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,315,776,780,785,786,27837</link.rule.ids></links><search><creatorcontrib>Libin, Pieter</creatorcontrib><creatorcontrib>Verstraeten, Timothy</creatorcontrib><creatorcontrib>Theys, Kristof</creatorcontrib><creatorcontrib>Roijers, Diederik</creatorcontrib><creatorcontrib>Vrancx, Peter</creatorcontrib><creatorcontrib>Nowe, Ann</creatorcontrib><title>Efficient evaluation of influenza mitigation strategies using preventive bandits</title><title>Lecture Notes in Computer Science</title><description>Pandemic influenza has the epidemiological potential to kill millions of people. While different preventive measures exist, it remains challenging to implement them in an en effective and efficient way. To improve preventive strategies, it is necessary to thoroughly understand the impact of such strategies on the complex dynamics of influenza epidemics. To this end, epidemiological models provide an essential tool to evaluate such strategies in silico. Epidemiological models are frequently used to assist the decision making concern- ing the mitigation of ongoing epidemics. Therefore, rapidly identifying the most promising preventive strategies is crucial to adequately inform public health. To this end, we formulate the evaluation of prevention strategies as a multi- armed bandit problem. The utility of this novel evaluation method is confirmed through experiments in the context of a pandemic influenza model.</description><issn>0302-9743</issn><isbn>3319716786</isbn><isbn>9783319716787</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2017</creationdate><recordtype>conference_proceeding</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVzssKwjAUBNCACtbHP2TnQgpp0lfWUnHpwn2J7U25WtPSJEX8egv6AboaGM7AzMhKiEhmUZrl6ZwETDAeyiwWS7Ky9sYY45nkATkXWmOFYByFUbVeOewM7TRFo1sP5qXoAx02n966QTloECz1Fk1D-wHGaYsj0KsyNTq7IQutWgvbb67J7lhcDqfw7lvwEy5r26sKyoiLOJneyTLJ40Tm4h-5_02W7unEG2zRUI8</recordid><startdate>20170531</startdate><enddate>20170531</enddate><creator>Libin, Pieter</creator><creator>Verstraeten, Timothy</creator><creator>Theys, Kristof</creator><creator>Roijers, Diederik</creator><creator>Vrancx, Peter</creator><creator>Nowe, Ann</creator><general>Springer Verlag</general><scope>FZOIL</scope></search><sort><creationdate>20170531</creationdate><title>Efficient evaluation of influenza mitigation strategies using preventive bandits</title><author>Libin, Pieter ; Verstraeten, Timothy ; Theys, Kristof ; Roijers, Diederik ; Vrancx, Peter ; Nowe, Ann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_5845983</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Libin, Pieter</creatorcontrib><creatorcontrib>Verstraeten, Timothy</creatorcontrib><creatorcontrib>Theys, Kristof</creatorcontrib><creatorcontrib>Roijers, Diederik</creatorcontrib><creatorcontrib>Vrancx, Peter</creatorcontrib><creatorcontrib>Nowe, Ann</creatorcontrib><collection>Lirias (KU Leuven Association)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Libin, Pieter</au><au>Verstraeten, Timothy</au><au>Theys, Kristof</au><au>Roijers, Diederik</au><au>Vrancx, Peter</au><au>Nowe, Ann</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Efficient evaluation of influenza mitigation strategies using preventive bandits</atitle><btitle>Lecture Notes in Computer Science</btitle><date>2017-05-31</date><risdate>2017</risdate><volume>10643</volume><spage>67</spage><epage>85</epage><pages>67-85</pages><issn>0302-9743</issn><isbn>3319716786</isbn><isbn>9783319716787</isbn><abstract>Pandemic influenza has the epidemiological potential to kill millions of people. While different preventive measures exist, it remains challenging to implement them in an en effective and efficient way. To improve preventive strategies, it is necessary to thoroughly understand the impact of such strategies on the complex dynamics of influenza epidemics. To this end, epidemiological models provide an essential tool to evaluate such strategies in silico. Epidemiological models are frequently used to assist the decision making concern- ing the mitigation of ongoing epidemics. Therefore, rapidly identifying the most promising preventive strategies is crucial to adequately inform public health. To this end, we formulate the evaluation of prevention strategies as a multi- armed bandit problem. The utility of this novel evaluation method is confirmed through experiments in the context of a pandemic influenza model.</abstract><pub>Springer Verlag</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0302-9743
ispartof Lecture Notes in Computer Science, 2017, Vol.10643, p.67-85
issn 0302-9743
language eng
recordid cdi_kuleuven_dspace_123456789_584598
source Lirias (KU Leuven Association); Springer Books
title Efficient evaluation of influenza mitigation strategies using preventive bandits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A14%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Efficient%20evaluation%20of%20influenza%20mitigation%20strategies%20using%20preventive%20bandits&rft.btitle=Lecture%20Notes%20in%20Computer%20Science&rft.au=Libin,%20Pieter&rft.date=2017-05-31&rft.volume=10643&rft.spage=67&rft.epage=85&rft.pages=67-85&rft.issn=0302-9743&rft.isbn=3319716786&rft.isbn_list=9783319716787&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_584598%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true