Forward-backward quasi-Newton methods for nonsmooth optimization problems

© 2017, Springer Science+Business Media New York. The forward-backward splitting method (FBS) for minimizing a nonsmooth composite function can be interpreted as a (variable-metric) gradient method over a continuously differentiable function which we call forward-backward envelope (FBE). This allows...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational Optimization and Applications 2017-07, Vol.67 (3), p.443-487
Hauptverfasser: Stella, Lorenzo, Themelis, Andreas, Patrinos, Panos
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 487
container_issue 3
container_start_page 443
container_title Computational Optimization and Applications
container_volume 67
creator Stella, Lorenzo
Themelis, Andreas
Patrinos, Panos
description © 2017, Springer Science+Business Media New York. The forward-backward splitting method (FBS) for minimizing a nonsmooth composite function can be interpreted as a (variable-metric) gradient method over a continuously differentiable function which we call forward-backward envelope (FBE). This allows to extend algorithms for smooth unconstrained optimization and apply them to nonsmooth (possibly constrained) problems. Since the FBE can be computed by simply evaluating forward-backward steps, the resulting methods rely on a similar black-box oracle as FBS. We propose an algorithmic scheme that enjoys the same global convergence properties of FBS when the problem is convex, or when the objective function possesses the Kurdyka-Łojasiewicz property at its critical points. Moreover, when using quasi-Newton directions the proposed method achieves superlinear convergence provided that usual second-order sufficiency conditions on the FBE hold at the limit point of the generated sequence. Such conditions translate into milder requirements on the original function involving generalized second-order differentiability. We show that BFGS fits our framework and that the limited-memory variant L-BFGS is well suited for large-scale problems, greatly outperforming FBS or its accelerated version in practice, as well as ADMM and other problem-specific solvers. The analysis of superlinear convergence is based on an extension of the Dennis and Moré theorem for the proposed algorithmic scheme.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_568024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_568024</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_5680243</originalsourceid><addsrcrecordid>eNqNjL0OgjAYADtoIqLv0M3BkNSW39lIdHFybwqUgEA_5CtifHo18QGY7obLLYjDEh56IWNiRdaId8ZYEgnukEsKw6SGwstU3vyEPkaFtXfVkwVDO20rKJCWMFADBjsAW1Hobd3Vb2Xrb9IPkLW6ww1ZlqpFvf3TJbv0dDuevWZs9fjURhbYq1zLAxd-EEZxIoMwZtwXLtnPK6V9WTH_-wHNW0uL</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forward-backward quasi-Newton methods for nonsmooth optimization problems</title><source>Lirias (KU Leuven Association)</source><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Stella, Lorenzo ; Themelis, Andreas ; Patrinos, Panos</creator><creatorcontrib>Stella, Lorenzo ; Themelis, Andreas ; Patrinos, Panos</creatorcontrib><description>© 2017, Springer Science+Business Media New York. The forward-backward splitting method (FBS) for minimizing a nonsmooth composite function can be interpreted as a (variable-metric) gradient method over a continuously differentiable function which we call forward-backward envelope (FBE). This allows to extend algorithms for smooth unconstrained optimization and apply them to nonsmooth (possibly constrained) problems. Since the FBE can be computed by simply evaluating forward-backward steps, the resulting methods rely on a similar black-box oracle as FBS. We propose an algorithmic scheme that enjoys the same global convergence properties of FBS when the problem is convex, or when the objective function possesses the Kurdyka-Łojasiewicz property at its critical points. Moreover, when using quasi-Newton directions the proposed method achieves superlinear convergence provided that usual second-order sufficiency conditions on the FBE hold at the limit point of the generated sequence. Such conditions translate into milder requirements on the original function involving generalized second-order differentiability. We show that BFGS fits our framework and that the limited-memory variant L-BFGS is well suited for large-scale problems, greatly outperforming FBS or its accelerated version in practice, as well as ADMM and other problem-specific solvers. The analysis of superlinear convergence is based on an extension of the Dennis and Moré theorem for the proposed algorithmic scheme.</description><identifier>ISSN: 0926-6003</identifier><language>eng</language><publisher>Berlin: Kluwer Academic Publishers</publisher><ispartof>Computational Optimization and Applications, 2017-07, Vol.67 (3), p.443-487</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,27859</link.rule.ids></links><search><creatorcontrib>Stella, Lorenzo</creatorcontrib><creatorcontrib>Themelis, Andreas</creatorcontrib><creatorcontrib>Patrinos, Panos</creatorcontrib><title>Forward-backward quasi-Newton methods for nonsmooth optimization problems</title><title>Computational Optimization and Applications</title><description>© 2017, Springer Science+Business Media New York. The forward-backward splitting method (FBS) for minimizing a nonsmooth composite function can be interpreted as a (variable-metric) gradient method over a continuously differentiable function which we call forward-backward envelope (FBE). This allows to extend algorithms for smooth unconstrained optimization and apply them to nonsmooth (possibly constrained) problems. Since the FBE can be computed by simply evaluating forward-backward steps, the resulting methods rely on a similar black-box oracle as FBS. We propose an algorithmic scheme that enjoys the same global convergence properties of FBS when the problem is convex, or when the objective function possesses the Kurdyka-Łojasiewicz property at its critical points. Moreover, when using quasi-Newton directions the proposed method achieves superlinear convergence provided that usual second-order sufficiency conditions on the FBE hold at the limit point of the generated sequence. Such conditions translate into milder requirements on the original function involving generalized second-order differentiability. We show that BFGS fits our framework and that the limited-memory variant L-BFGS is well suited for large-scale problems, greatly outperforming FBS or its accelerated version in practice, as well as ADMM and other problem-specific solvers. The analysis of superlinear convergence is based on an extension of the Dennis and Moré theorem for the proposed algorithmic scheme.</description><issn>0926-6003</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNjL0OgjAYADtoIqLv0M3BkNSW39lIdHFybwqUgEA_5CtifHo18QGY7obLLYjDEh56IWNiRdaId8ZYEgnukEsKw6SGwstU3vyEPkaFtXfVkwVDO20rKJCWMFADBjsAW1Hobd3Vb2Xrb9IPkLW6ww1ZlqpFvf3TJbv0dDuevWZs9fjURhbYq1zLAxd-EEZxIoMwZtwXLtnPK6V9WTH_-wHNW0uL</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Stella, Lorenzo</creator><creator>Themelis, Andreas</creator><creator>Patrinos, Panos</creator><general>Kluwer Academic Publishers</general><scope>FZOIL</scope></search><sort><creationdate>201707</creationdate><title>Forward-backward quasi-Newton methods for nonsmooth optimization problems</title><author>Stella, Lorenzo ; Themelis, Andreas ; Patrinos, Panos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_5680243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stella, Lorenzo</creatorcontrib><creatorcontrib>Themelis, Andreas</creatorcontrib><creatorcontrib>Patrinos, Panos</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Computational Optimization and Applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stella, Lorenzo</au><au>Themelis, Andreas</au><au>Patrinos, Panos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forward-backward quasi-Newton methods for nonsmooth optimization problems</atitle><jtitle>Computational Optimization and Applications</jtitle><date>2017-07</date><risdate>2017</risdate><volume>67</volume><issue>3</issue><spage>443</spage><epage>487</epage><pages>443-487</pages><issn>0926-6003</issn><abstract>© 2017, Springer Science+Business Media New York. The forward-backward splitting method (FBS) for minimizing a nonsmooth composite function can be interpreted as a (variable-metric) gradient method over a continuously differentiable function which we call forward-backward envelope (FBE). This allows to extend algorithms for smooth unconstrained optimization and apply them to nonsmooth (possibly constrained) problems. Since the FBE can be computed by simply evaluating forward-backward steps, the resulting methods rely on a similar black-box oracle as FBS. We propose an algorithmic scheme that enjoys the same global convergence properties of FBS when the problem is convex, or when the objective function possesses the Kurdyka-Łojasiewicz property at its critical points. Moreover, when using quasi-Newton directions the proposed method achieves superlinear convergence provided that usual second-order sufficiency conditions on the FBE hold at the limit point of the generated sequence. Such conditions translate into milder requirements on the original function involving generalized second-order differentiability. We show that BFGS fits our framework and that the limited-memory variant L-BFGS is well suited for large-scale problems, greatly outperforming FBS or its accelerated version in practice, as well as ADMM and other problem-specific solvers. The analysis of superlinear convergence is based on an extension of the Dennis and Moré theorem for the proposed algorithmic scheme.</abstract><cop>Berlin</cop><pub>Kluwer Academic Publishers</pub></addata></record>
fulltext fulltext
identifier ISSN: 0926-6003
ispartof Computational Optimization and Applications, 2017-07, Vol.67 (3), p.443-487
issn 0926-6003
language eng
recordid cdi_kuleuven_dspace_123456789_568024
source Lirias (KU Leuven Association); Business Source Complete; SpringerLink Journals - AutoHoldings
title Forward-backward quasi-Newton methods for nonsmooth optimization problems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A59%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forward-backward%20quasi-Newton%20methods%20for%20nonsmooth%20optimization%20problems&rft.jtitle=Computational%20Optimization%20and%20Applications&rft.au=Stella,%20Lorenzo&rft.date=2017-07&rft.volume=67&rft.issue=3&rft.spage=443&rft.epage=487&rft.pages=443-487&rft.issn=0926-6003&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_568024%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true