Multidimensional Toda lattices: continuous and discrete time

© 2016, Institute of Mathematics. All rights reserved. In this paper we present multidimensional analogues of both the continuousand discrete-time Toda lattices. The integrable systems that we consider here have two or more space coordinates. To construct the systems, we generalize the orthogonal po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS 2016-01, Vol.12
Hauptverfasser: Aptekarev, Alexander I, Derevyagin, Maxim, Miki, Hiroshi, Van Assche, Walter
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS
container_volume 12
creator Aptekarev, Alexander I
Derevyagin, Maxim
Miki, Hiroshi
Van Assche, Walter
description © 2016, Institute of Mathematics. All rights reserved. In this paper we present multidimensional analogues of both the continuousand discrete-time Toda lattices. The integrable systems that we consider here have two or more space coordinates. To construct the systems, we generalize the orthogonal polynomial approach for the continuous and discrete Toda lattices to the case of multiple orthogonal polynomials.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_542227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_542227</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_5422273</originalsourceid><addsrcrecordid>eNqVi70KwjAYAIMo-PsO2Ryk0KZJ2oqbKC5u3UNIPiEaEzFfxMfXwcFRp7vhbkAmVVuJopSiG375mExTOpcll1yWE7I5Zo_OuiuE5GLQnvbRauo1ojOQ1tTEgC7kmBPVwVLrkrkDAsX3Miejk_YJFh_OyHK_67eH4pI95AcEZdNNG1AVq7mQTdspwRljTf1PufqtVPjE-gXEiUfm</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multidimensional Toda lattices: continuous and discrete time</title><source>Math-Net.Ru (free access)</source><source>Lirias (KU Leuven Association)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Aptekarev, Alexander I ; Derevyagin, Maxim ; Miki, Hiroshi ; Van Assche, Walter</creator><creatorcontrib>Aptekarev, Alexander I ; Derevyagin, Maxim ; Miki, Hiroshi ; Van Assche, Walter</creatorcontrib><description>© 2016, Institute of Mathematics. All rights reserved. In this paper we present multidimensional analogues of both the continuousand discrete-time Toda lattices. The integrable systems that we consider here have two or more space coordinates. To construct the systems, we generalize the orthogonal polynomial approach for the continuous and discrete Toda lattices to the case of multiple orthogonal polynomials.</description><identifier>ISSN: 1815-0659</identifier><identifier>EISSN: 1815-0659</identifier><language>eng</language><publisher>NATL ACAD SCI UKRAINE, INST MATH</publisher><ispartof>SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016-01, Vol.12</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,27859</link.rule.ids></links><search><creatorcontrib>Aptekarev, Alexander I</creatorcontrib><creatorcontrib>Derevyagin, Maxim</creatorcontrib><creatorcontrib>Miki, Hiroshi</creatorcontrib><creatorcontrib>Van Assche, Walter</creatorcontrib><title>Multidimensional Toda lattices: continuous and discrete time</title><title>SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS</title><description>© 2016, Institute of Mathematics. All rights reserved. In this paper we present multidimensional analogues of both the continuousand discrete-time Toda lattices. The integrable systems that we consider here have two or more space coordinates. To construct the systems, we generalize the orthogonal polynomial approach for the continuous and discrete Toda lattices to the case of multiple orthogonal polynomials.</description><issn>1815-0659</issn><issn>1815-0659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVi70KwjAYAIMo-PsO2Ryk0KZJ2oqbKC5u3UNIPiEaEzFfxMfXwcFRp7vhbkAmVVuJopSiG375mExTOpcll1yWE7I5Zo_OuiuE5GLQnvbRauo1ojOQ1tTEgC7kmBPVwVLrkrkDAsX3Miejk_YJFh_OyHK_67eH4pI95AcEZdNNG1AVq7mQTdspwRljTf1PufqtVPjE-gXEiUfm</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Aptekarev, Alexander I</creator><creator>Derevyagin, Maxim</creator><creator>Miki, Hiroshi</creator><creator>Van Assche, Walter</creator><general>NATL ACAD SCI UKRAINE, INST MATH</general><scope>FZOIL</scope></search><sort><creationdate>20160101</creationdate><title>Multidimensional Toda lattices: continuous and discrete time</title><author>Aptekarev, Alexander I ; Derevyagin, Maxim ; Miki, Hiroshi ; Van Assche, Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_5422273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aptekarev, Alexander I</creatorcontrib><creatorcontrib>Derevyagin, Maxim</creatorcontrib><creatorcontrib>Miki, Hiroshi</creatorcontrib><creatorcontrib>Van Assche, Walter</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aptekarev, Alexander I</au><au>Derevyagin, Maxim</au><au>Miki, Hiroshi</au><au>Van Assche, Walter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidimensional Toda lattices: continuous and discrete time</atitle><jtitle>SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>12</volume><issn>1815-0659</issn><eissn>1815-0659</eissn><abstract>© 2016, Institute of Mathematics. All rights reserved. In this paper we present multidimensional analogues of both the continuousand discrete-time Toda lattices. The integrable systems that we consider here have two or more space coordinates. To construct the systems, we generalize the orthogonal polynomial approach for the continuous and discrete Toda lattices to the case of multiple orthogonal polynomials.</abstract><pub>NATL ACAD SCI UKRAINE, INST MATH</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1815-0659
ispartof SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016-01, Vol.12
issn 1815-0659
1815-0659
language eng
recordid cdi_kuleuven_dspace_123456789_542227
source Math-Net.Ru (free access); Lirias (KU Leuven Association); EZB-FREE-00999 freely available EZB journals
title Multidimensional Toda lattices: continuous and discrete time
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidimensional%20Toda%20lattices:%20continuous%20and%20discrete%20time&rft.jtitle=SYMMETRY%20INTEGRABILITY%20AND%20GEOMETRY-METHODS%20AND%20APPLICATIONS&rft.au=Aptekarev,%20Alexander%20I&rft.date=2016-01-01&rft.volume=12&rft.issn=1815-0659&rft.eissn=1815-0659&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_542227%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true