Multidimensional Toda lattices: continuous and discrete time
© 2016, Institute of Mathematics. All rights reserved. In this paper we present multidimensional analogues of both the continuousand discrete-time Toda lattices. The integrable systems that we consider here have two or more space coordinates. To construct the systems, we generalize the orthogonal po...
Gespeichert in:
Veröffentlicht in: | SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS 2016-01, Vol.12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS |
container_volume | 12 |
creator | Aptekarev, Alexander I Derevyagin, Maxim Miki, Hiroshi Van Assche, Walter |
description | © 2016, Institute of Mathematics. All rights reserved. In this paper we present multidimensional analogues of both the continuousand discrete-time Toda lattices. The integrable systems that we consider here have two or more space coordinates. To construct the systems, we generalize the orthogonal polynomial approach for the continuous and discrete Toda lattices to the case of multiple orthogonal polynomials. |
format | Article |
fullrecord | <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_542227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_542227</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_5422273</originalsourceid><addsrcrecordid>eNqVi70KwjAYAIMo-PsO2Ryk0KZJ2oqbKC5u3UNIPiEaEzFfxMfXwcFRp7vhbkAmVVuJopSiG375mExTOpcll1yWE7I5Zo_OuiuE5GLQnvbRauo1ojOQ1tTEgC7kmBPVwVLrkrkDAsX3Miejk_YJFh_OyHK_67eH4pI95AcEZdNNG1AVq7mQTdspwRljTf1PufqtVPjE-gXEiUfm</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multidimensional Toda lattices: continuous and discrete time</title><source>Math-Net.Ru (free access)</source><source>Lirias (KU Leuven Association)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Aptekarev, Alexander I ; Derevyagin, Maxim ; Miki, Hiroshi ; Van Assche, Walter</creator><creatorcontrib>Aptekarev, Alexander I ; Derevyagin, Maxim ; Miki, Hiroshi ; Van Assche, Walter</creatorcontrib><description>© 2016, Institute of Mathematics. All rights reserved. In this paper we present multidimensional analogues of both the continuousand discrete-time Toda lattices. The integrable systems that we consider here have two or more space coordinates. To construct the systems, we generalize the orthogonal polynomial approach for the continuous and discrete Toda lattices to the case of multiple orthogonal polynomials.</description><identifier>ISSN: 1815-0659</identifier><identifier>EISSN: 1815-0659</identifier><language>eng</language><publisher>NATL ACAD SCI UKRAINE, INST MATH</publisher><ispartof>SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016-01, Vol.12</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,27859</link.rule.ids></links><search><creatorcontrib>Aptekarev, Alexander I</creatorcontrib><creatorcontrib>Derevyagin, Maxim</creatorcontrib><creatorcontrib>Miki, Hiroshi</creatorcontrib><creatorcontrib>Van Assche, Walter</creatorcontrib><title>Multidimensional Toda lattices: continuous and discrete time</title><title>SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS</title><description>© 2016, Institute of Mathematics. All rights reserved. In this paper we present multidimensional analogues of both the continuousand discrete-time Toda lattices. The integrable systems that we consider here have two or more space coordinates. To construct the systems, we generalize the orthogonal polynomial approach for the continuous and discrete Toda lattices to the case of multiple orthogonal polynomials.</description><issn>1815-0659</issn><issn>1815-0659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVi70KwjAYAIMo-PsO2Ryk0KZJ2oqbKC5u3UNIPiEaEzFfxMfXwcFRp7vhbkAmVVuJopSiG375mExTOpcll1yWE7I5Zo_OuiuE5GLQnvbRauo1ojOQ1tTEgC7kmBPVwVLrkrkDAsX3Miejk_YJFh_OyHK_67eH4pI95AcEZdNNG1AVq7mQTdspwRljTf1PufqtVPjE-gXEiUfm</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Aptekarev, Alexander I</creator><creator>Derevyagin, Maxim</creator><creator>Miki, Hiroshi</creator><creator>Van Assche, Walter</creator><general>NATL ACAD SCI UKRAINE, INST MATH</general><scope>FZOIL</scope></search><sort><creationdate>20160101</creationdate><title>Multidimensional Toda lattices: continuous and discrete time</title><author>Aptekarev, Alexander I ; Derevyagin, Maxim ; Miki, Hiroshi ; Van Assche, Walter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_5422273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aptekarev, Alexander I</creatorcontrib><creatorcontrib>Derevyagin, Maxim</creatorcontrib><creatorcontrib>Miki, Hiroshi</creatorcontrib><creatorcontrib>Van Assche, Walter</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aptekarev, Alexander I</au><au>Derevyagin, Maxim</au><au>Miki, Hiroshi</au><au>Van Assche, Walter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidimensional Toda lattices: continuous and discrete time</atitle><jtitle>SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>12</volume><issn>1815-0659</issn><eissn>1815-0659</eissn><abstract>© 2016, Institute of Mathematics. All rights reserved. In this paper we present multidimensional analogues of both the continuousand discrete-time Toda lattices. The integrable systems that we consider here have two or more space coordinates. To construct the systems, we generalize the orthogonal polynomial approach for the continuous and discrete Toda lattices to the case of multiple orthogonal polynomials.</abstract><pub>NATL ACAD SCI UKRAINE, INST MATH</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1815-0659 |
ispartof | SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2016-01, Vol.12 |
issn | 1815-0659 1815-0659 |
language | eng |
recordid | cdi_kuleuven_dspace_123456789_542227 |
source | Math-Net.Ru (free access); Lirias (KU Leuven Association); EZB-FREE-00999 freely available EZB journals |
title | Multidimensional Toda lattices: continuous and discrete time |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidimensional%20Toda%20lattices:%20continuous%20and%20discrete%20time&rft.jtitle=SYMMETRY%20INTEGRABILITY%20AND%20GEOMETRY-METHODS%20AND%20APPLICATIONS&rft.au=Aptekarev,%20Alexander%20I&rft.date=2016-01-01&rft.volume=12&rft.issn=1815-0659&rft.eissn=1815-0659&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_542227%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |