High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection

Phage-mediated metabolic changes in bacteria are hypothesized to markedly alter global nutrient and biogeochemical cycles. Despite their theoretic importance, experimental data on the net metabolic impact of phage infection on the bacterial metabolism remains scarce. In this study, we tracked the dy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The ISME Journal 2016-08, Vol.10 (8), p.1823-1835
Hauptverfasser: De Smet, Jeroen, Zimmermann, Michael, Kogadeeva, Maria, Ceyssens, Pieter-Jan, Vermaelen, Wesley, Blasdel, Bob, Jang, H.B, Sauer, Uwe, Lavigne, Rob
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1835
container_issue 8
container_start_page 1823
container_title The ISME Journal
container_volume 10
creator De Smet, Jeroen
Zimmermann, Michael
Kogadeeva, Maria
Ceyssens, Pieter-Jan
Vermaelen, Wesley
Blasdel, Bob
Jang, H.B
Sauer, Uwe
Lavigne, Rob
description Phage-mediated metabolic changes in bacteria are hypothesized to markedly alter global nutrient and biogeochemical cycles. Despite their theoretic importance, experimental data on the net metabolic impact of phage infection on the bacterial metabolism remains scarce. In this study, we tracked the dynamics of intracellular metabolites using untargeted high coverage metabolomics in Pseudomonas aeruginosa cells infected with lytic bacteriophages from six distinct phage genera. Analysis of the metabolomics data indicates an active interference in the host metabolism. In general, phages elicit an increase in pyrimidine and nucleotide sugar metabolism. Furthermore, clear phage-specific and infection stage-specific responses are observed, ranging from extreme metabolite depletion (for example, phage YuA) to complete reorganization of the metabolism (for example, phage phiKZ). As expected, pathways targeted by the phage-encoded auxiliary metabolic genes (AMGs) were enriched among the metabolites changing during infection. The effect on pyrimidine metabolism of phages encoding AMGs capable of host genome degradation (for example, YuA and LUZ19) was distinct from those lacking nuclease-encoding genes (for example, phiKZ), which demonstrates the link between the encoded set of AMGs of a phage and its impact on host physiology. However, a large fraction of the profound effect on host metabolism could not be attributed to the phage-encoded AMGs. We suggest a potentially crucial role for small, 'non-enzymatic' peptides in metabolism take-over and hypothesize on potential biotechnical applications for such peptides. The highly phage-specific nature of the metabolic impact emphasizes the potential importance of the 'phage diversity' parameter when studying metabolic interactions in complex communities.The ISME Journal advance online publication, 16 February 2016; doi:10.1038/ismej.2016.3.
format Article
fullrecord <record><control><sourceid>kuleuven_TOX</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_536153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_536153</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_5361533</originalsourceid><addsrcrecordid>eNqNzLFOwzAUhWEPRaIU3uFuDChSU2Mb5grUkYE9Ms6Ne8Gxo1w7olIfvkbiATqd5fzfSqxbo9rGSL27FXfM39utMlqbtTgfyB_BpQVn6xFGzPYrhTSSY7DRhhMTw4wL2sAwHeun4QkdDeTAhlyrTCky5AQfjKVPY4q2pjgXTzGxrVE1KulP0JeZogeKA7q_7F7cDNXFh__diMf3t8_9ofkpAcuCset5sg67dieflTYvr52SulVSbsTTdc8u_2Z5vXsBv5hfTg</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection</title><source>Access via Oxford University Press (Open Access Collection)</source><creator>De Smet, Jeroen ; Zimmermann, Michael ; Kogadeeva, Maria ; Ceyssens, Pieter-Jan ; Vermaelen, Wesley ; Blasdel, Bob ; Jang, H.B ; Sauer, Uwe ; Lavigne, Rob</creator><creatorcontrib>De Smet, Jeroen ; Zimmermann, Michael ; Kogadeeva, Maria ; Ceyssens, Pieter-Jan ; Vermaelen, Wesley ; Blasdel, Bob ; Jang, H.B ; Sauer, Uwe ; Lavigne, Rob</creatorcontrib><description>Phage-mediated metabolic changes in bacteria are hypothesized to markedly alter global nutrient and biogeochemical cycles. Despite their theoretic importance, experimental data on the net metabolic impact of phage infection on the bacterial metabolism remains scarce. In this study, we tracked the dynamics of intracellular metabolites using untargeted high coverage metabolomics in Pseudomonas aeruginosa cells infected with lytic bacteriophages from six distinct phage genera. Analysis of the metabolomics data indicates an active interference in the host metabolism. In general, phages elicit an increase in pyrimidine and nucleotide sugar metabolism. Furthermore, clear phage-specific and infection stage-specific responses are observed, ranging from extreme metabolite depletion (for example, phage YuA) to complete reorganization of the metabolism (for example, phage phiKZ). As expected, pathways targeted by the phage-encoded auxiliary metabolic genes (AMGs) were enriched among the metabolites changing during infection. The effect on pyrimidine metabolism of phages encoding AMGs capable of host genome degradation (for example, YuA and LUZ19) was distinct from those lacking nuclease-encoding genes (for example, phiKZ), which demonstrates the link between the encoded set of AMGs of a phage and its impact on host physiology. However, a large fraction of the profound effect on host metabolism could not be attributed to the phage-encoded AMGs. We suggest a potentially crucial role for small, 'non-enzymatic' peptides in metabolism take-over and hypothesize on potential biotechnical applications for such peptides. The highly phage-specific nature of the metabolic impact emphasizes the potential importance of the 'phage diversity' parameter when studying metabolic interactions in complex communities.The ISME Journal advance online publication, 16 February 2016; doi:10.1038/ismej.2016.3.</description><identifier>ISSN: 1751-7362</identifier><language>eng</language><publisher>Nature Publishing Group</publisher><ispartof>The ISME Journal, 2016-08, Vol.10 (8), p.1823-1835</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,780,784,27860</link.rule.ids><linktorsrc>$$Uhttps://lirias.kuleuven.be/handle/123456789/536153$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>De Smet, Jeroen</creatorcontrib><creatorcontrib>Zimmermann, Michael</creatorcontrib><creatorcontrib>Kogadeeva, Maria</creatorcontrib><creatorcontrib>Ceyssens, Pieter-Jan</creatorcontrib><creatorcontrib>Vermaelen, Wesley</creatorcontrib><creatorcontrib>Blasdel, Bob</creatorcontrib><creatorcontrib>Jang, H.B</creatorcontrib><creatorcontrib>Sauer, Uwe</creatorcontrib><creatorcontrib>Lavigne, Rob</creatorcontrib><title>High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection</title><title>The ISME Journal</title><description>Phage-mediated metabolic changes in bacteria are hypothesized to markedly alter global nutrient and biogeochemical cycles. Despite their theoretic importance, experimental data on the net metabolic impact of phage infection on the bacterial metabolism remains scarce. In this study, we tracked the dynamics of intracellular metabolites using untargeted high coverage metabolomics in Pseudomonas aeruginosa cells infected with lytic bacteriophages from six distinct phage genera. Analysis of the metabolomics data indicates an active interference in the host metabolism. In general, phages elicit an increase in pyrimidine and nucleotide sugar metabolism. Furthermore, clear phage-specific and infection stage-specific responses are observed, ranging from extreme metabolite depletion (for example, phage YuA) to complete reorganization of the metabolism (for example, phage phiKZ). As expected, pathways targeted by the phage-encoded auxiliary metabolic genes (AMGs) were enriched among the metabolites changing during infection. The effect on pyrimidine metabolism of phages encoding AMGs capable of host genome degradation (for example, YuA and LUZ19) was distinct from those lacking nuclease-encoding genes (for example, phiKZ), which demonstrates the link between the encoded set of AMGs of a phage and its impact on host physiology. However, a large fraction of the profound effect on host metabolism could not be attributed to the phage-encoded AMGs. We suggest a potentially crucial role for small, 'non-enzymatic' peptides in metabolism take-over and hypothesize on potential biotechnical applications for such peptides. The highly phage-specific nature of the metabolic impact emphasizes the potential importance of the 'phage diversity' parameter when studying metabolic interactions in complex communities.The ISME Journal advance online publication, 16 February 2016; doi:10.1038/ismej.2016.3.</description><issn>1751-7362</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNzLFOwzAUhWEPRaIU3uFuDChSU2Mb5grUkYE9Ms6Ne8Gxo1w7olIfvkbiATqd5fzfSqxbo9rGSL27FXfM39utMlqbtTgfyB_BpQVn6xFGzPYrhTSSY7DRhhMTw4wL2sAwHeun4QkdDeTAhlyrTCky5AQfjKVPY4q2pjgXTzGxrVE1KulP0JeZogeKA7q_7F7cDNXFh__diMf3t8_9ofkpAcuCset5sg67dieflTYvr52SulVSbsTTdc8u_2Z5vXsBv5hfTg</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>De Smet, Jeroen</creator><creator>Zimmermann, Michael</creator><creator>Kogadeeva, Maria</creator><creator>Ceyssens, Pieter-Jan</creator><creator>Vermaelen, Wesley</creator><creator>Blasdel, Bob</creator><creator>Jang, H.B</creator><creator>Sauer, Uwe</creator><creator>Lavigne, Rob</creator><general>Nature Publishing Group</general><scope>FZOIL</scope></search><sort><creationdate>201608</creationdate><title>High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection</title><author>De Smet, Jeroen ; Zimmermann, Michael ; Kogadeeva, Maria ; Ceyssens, Pieter-Jan ; Vermaelen, Wesley ; Blasdel, Bob ; Jang, H.B ; Sauer, Uwe ; Lavigne, Rob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_5361533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Smet, Jeroen</creatorcontrib><creatorcontrib>Zimmermann, Michael</creatorcontrib><creatorcontrib>Kogadeeva, Maria</creatorcontrib><creatorcontrib>Ceyssens, Pieter-Jan</creatorcontrib><creatorcontrib>Vermaelen, Wesley</creatorcontrib><creatorcontrib>Blasdel, Bob</creatorcontrib><creatorcontrib>Jang, H.B</creatorcontrib><creatorcontrib>Sauer, Uwe</creatorcontrib><creatorcontrib>Lavigne, Rob</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>The ISME Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Smet, Jeroen</au><au>Zimmermann, Michael</au><au>Kogadeeva, Maria</au><au>Ceyssens, Pieter-Jan</au><au>Vermaelen, Wesley</au><au>Blasdel, Bob</au><au>Jang, H.B</au><au>Sauer, Uwe</au><au>Lavigne, Rob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection</atitle><jtitle>The ISME Journal</jtitle><date>2016-08</date><risdate>2016</risdate><volume>10</volume><issue>8</issue><spage>1823</spage><epage>1835</epage><pages>1823-1835</pages><issn>1751-7362</issn><abstract>Phage-mediated metabolic changes in bacteria are hypothesized to markedly alter global nutrient and biogeochemical cycles. Despite their theoretic importance, experimental data on the net metabolic impact of phage infection on the bacterial metabolism remains scarce. In this study, we tracked the dynamics of intracellular metabolites using untargeted high coverage metabolomics in Pseudomonas aeruginosa cells infected with lytic bacteriophages from six distinct phage genera. Analysis of the metabolomics data indicates an active interference in the host metabolism. In general, phages elicit an increase in pyrimidine and nucleotide sugar metabolism. Furthermore, clear phage-specific and infection stage-specific responses are observed, ranging from extreme metabolite depletion (for example, phage YuA) to complete reorganization of the metabolism (for example, phage phiKZ). As expected, pathways targeted by the phage-encoded auxiliary metabolic genes (AMGs) were enriched among the metabolites changing during infection. The effect on pyrimidine metabolism of phages encoding AMGs capable of host genome degradation (for example, YuA and LUZ19) was distinct from those lacking nuclease-encoding genes (for example, phiKZ), which demonstrates the link between the encoded set of AMGs of a phage and its impact on host physiology. However, a large fraction of the profound effect on host metabolism could not be attributed to the phage-encoded AMGs. We suggest a potentially crucial role for small, 'non-enzymatic' peptides in metabolism take-over and hypothesize on potential biotechnical applications for such peptides. The highly phage-specific nature of the metabolic impact emphasizes the potential importance of the 'phage diversity' parameter when studying metabolic interactions in complex communities.The ISME Journal advance online publication, 16 February 2016; doi:10.1038/ismej.2016.3.</abstract><pub>Nature Publishing Group</pub></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1751-7362
ispartof The ISME Journal, 2016-08, Vol.10 (8), p.1823-1835
issn 1751-7362
language eng
recordid cdi_kuleuven_dspace_123456789_536153
source Access via Oxford University Press (Open Access Collection)
title High coverage metabolomics analysis reveals phage-specific alterations to Pseudomonas aeruginosa physiology during infection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20coverage%20metabolomics%20analysis%20reveals%20phage-specific%20alterations%20to%20Pseudomonas%20aeruginosa%20physiology%20during%20infection&rft.jtitle=The%20ISME%20Journal&rft.au=De%20Smet,%20Jeroen&rft.date=2016-08&rft.volume=10&rft.issue=8&rft.spage=1823&rft.epage=1835&rft.pages=1823-1835&rft.issn=1751-7362&rft_id=info:doi/&rft_dat=%3Ckuleuven_TOX%3E123456789_536153%3C/kuleuven_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true