The robustness of the hyperbolic efficiency estimator

The robustness properties of a specific type of orientation in the context of efficiency measurement using partial frontiers are investigated. This so called unconditional hyperbolic quantile estimator of efficiency has been recently studied and can be seen as an extension of the input/output method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational Statistics & Data Analysis 2013, Vol.57 (1), p.349-363
Hauptverfasser: Bruffaerts, C, De Rock, Bram, Dehon, C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 363
container_issue 1
container_start_page 349
container_title Computational Statistics & Data Analysis
container_volume 57
creator Bruffaerts, C
De Rock, Bram
Dehon, C
description The robustness properties of a specific type of orientation in the context of efficiency measurement using partial frontiers are investigated. This so called unconditional hyperbolic quantile estimator of efficiency has been recently studied and can be seen as an extension of the input/output methodology of partial frontiers that was introduced previously. The influence function as well as the breakdown point of this fully non-parametric and unconditional estimator are derived for a complete multivariate setup (multiple inputs and outputs). Like for the input and output quantile estimators, the hyperbolic quantile estimator is B-robust but unlike the two former types of estimator its breakdown point does not depend on the actual input or output level of the production unit. Some examples are given to assess the relevance of this type of estimator and to show the differences with the input and output quantile estimators of efficiency from both a robustness and a statistical efficiency point of view. Finally, a real life example is used to illustrate how the hyperbolic efficiency estimator might be used in a robust context.
format Article
fullrecord <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_518571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_518571</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_5185713</originalsourceid><addsrcrecordid>eNqVyr0OgjAUQOEOmog_79DNwZC0tKUwG40PwN5AvQ1VpIRbjLy9Dj6ATic5-RYkYTzXaSm1WJE14o0xlkldJERVLdAxNBPGHhBpcDR-TjsPMDah85aCc9566O1MAaN_1DGMW7J0dYew-3ZD9udTdbyk96mD6Qm9ueJQWzA8E1LluiiN4oXSXPwjD79JE19RvAHGX0N-</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The robustness of the hyperbolic efficiency estimator</title><source>Lirias (KU Leuven Association)</source><source>Elsevier ScienceDirect Journals</source><creator>Bruffaerts, C ; De Rock, Bram ; Dehon, C</creator><creatorcontrib>Bruffaerts, C ; De Rock, Bram ; Dehon, C</creatorcontrib><description>The robustness properties of a specific type of orientation in the context of efficiency measurement using partial frontiers are investigated. This so called unconditional hyperbolic quantile estimator of efficiency has been recently studied and can be seen as an extension of the input/output methodology of partial frontiers that was introduced previously. The influence function as well as the breakdown point of this fully non-parametric and unconditional estimator are derived for a complete multivariate setup (multiple inputs and outputs). Like for the input and output quantile estimators, the hyperbolic quantile estimator is B-robust but unlike the two former types of estimator its breakdown point does not depend on the actual input or output level of the production unit. Some examples are given to assess the relevance of this type of estimator and to show the differences with the input and output quantile estimators of efficiency from both a robustness and a statistical efficiency point of view. Finally, a real life example is used to illustrate how the hyperbolic efficiency estimator might be used in a robust context.</description><identifier>ISSN: 0167-9473</identifier><language>eng</language><publisher>AMSTERDAM: North-Holland Pub. Co</publisher><ispartof>Computational Statistics &amp; Data Analysis, 2013, Vol.57 (1), p.349-363</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,4010,27837</link.rule.ids></links><search><creatorcontrib>Bruffaerts, C</creatorcontrib><creatorcontrib>De Rock, Bram</creatorcontrib><creatorcontrib>Dehon, C</creatorcontrib><title>The robustness of the hyperbolic efficiency estimator</title><title>Computational Statistics &amp; Data Analysis</title><description>The robustness properties of a specific type of orientation in the context of efficiency measurement using partial frontiers are investigated. This so called unconditional hyperbolic quantile estimator of efficiency has been recently studied and can be seen as an extension of the input/output methodology of partial frontiers that was introduced previously. The influence function as well as the breakdown point of this fully non-parametric and unconditional estimator are derived for a complete multivariate setup (multiple inputs and outputs). Like for the input and output quantile estimators, the hyperbolic quantile estimator is B-robust but unlike the two former types of estimator its breakdown point does not depend on the actual input or output level of the production unit. Some examples are given to assess the relevance of this type of estimator and to show the differences with the input and output quantile estimators of efficiency from both a robustness and a statistical efficiency point of view. Finally, a real life example is used to illustrate how the hyperbolic efficiency estimator might be used in a robust context.</description><issn>0167-9473</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVyr0OgjAUQOEOmog_79DNwZC0tKUwG40PwN5AvQ1VpIRbjLy9Dj6ATic5-RYkYTzXaSm1WJE14o0xlkldJERVLdAxNBPGHhBpcDR-TjsPMDah85aCc9566O1MAaN_1DGMW7J0dYew-3ZD9udTdbyk96mD6Qm9ueJQWzA8E1LluiiN4oXSXPwjD79JE19RvAHGX0N-</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Bruffaerts, C</creator><creator>De Rock, Bram</creator><creator>Dehon, C</creator><general>North-Holland Pub. Co</general><scope>FZOIL</scope></search><sort><creationdate>2013</creationdate><title>The robustness of the hyperbolic efficiency estimator</title><author>Bruffaerts, C ; De Rock, Bram ; Dehon, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_5185713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruffaerts, C</creatorcontrib><creatorcontrib>De Rock, Bram</creatorcontrib><creatorcontrib>Dehon, C</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Computational Statistics &amp; Data Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruffaerts, C</au><au>De Rock, Bram</au><au>Dehon, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The robustness of the hyperbolic efficiency estimator</atitle><jtitle>Computational Statistics &amp; Data Analysis</jtitle><date>2013</date><risdate>2013</risdate><volume>57</volume><issue>1</issue><spage>349</spage><epage>363</epage><pages>349-363</pages><issn>0167-9473</issn><abstract>The robustness properties of a specific type of orientation in the context of efficiency measurement using partial frontiers are investigated. This so called unconditional hyperbolic quantile estimator of efficiency has been recently studied and can be seen as an extension of the input/output methodology of partial frontiers that was introduced previously. The influence function as well as the breakdown point of this fully non-parametric and unconditional estimator are derived for a complete multivariate setup (multiple inputs and outputs). Like for the input and output quantile estimators, the hyperbolic quantile estimator is B-robust but unlike the two former types of estimator its breakdown point does not depend on the actual input or output level of the production unit. Some examples are given to assess the relevance of this type of estimator and to show the differences with the input and output quantile estimators of efficiency from both a robustness and a statistical efficiency point of view. Finally, a real life example is used to illustrate how the hyperbolic efficiency estimator might be used in a robust context.</abstract><cop>AMSTERDAM</cop><pub>North-Holland Pub. Co</pub></addata></record>
fulltext fulltext
identifier ISSN: 0167-9473
ispartof Computational Statistics & Data Analysis, 2013, Vol.57 (1), p.349-363
issn 0167-9473
language eng
recordid cdi_kuleuven_dspace_123456789_518571
source Lirias (KU Leuven Association); Elsevier ScienceDirect Journals
title The robustness of the hyperbolic efficiency estimator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A45%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20robustness%20of%20the%20hyperbolic%20efficiency%20estimator&rft.jtitle=Computational%20Statistics%20&%20Data%20Analysis&rft.au=Bruffaerts,%20C&rft.date=2013&rft.volume=57&rft.issue=1&rft.spage=349&rft.epage=363&rft.pages=349-363&rft.issn=0167-9473&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_518571%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true