Static interfacial properties of Bose-Einstein-condensate mixtures
© 2015 American Physical Society. The interfacial profiles and interfacial tensions of phase-separated binary mixtures of Bose-Einstein condensates are studied theoretically. The two condensates are characterized by their respective healing lengths ξ1 and ξ2 and by the interspecies repulsive interac...
Gespeichert in:
Veröffentlicht in: | Physical Review A 2015, Vol.91 (3), p.033615-033615 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 033615 |
---|---|
container_issue | 3 |
container_start_page | 033615 |
container_title | Physical Review A |
container_volume | 91 |
creator | Indekeu, Joseph Lin, Chang-You Nguyen Van Thu Van Schaeybroeck, Bert Tran Huu Phat |
description | © 2015 American Physical Society. The interfacial profiles and interfacial tensions of phase-separated binary mixtures of Bose-Einstein condensates are studied theoretically. The two condensates are characterized by their respective healing lengths ξ1 and ξ2 and by the interspecies repulsive interaction K. An exact solution to the Gross-Pitaevskii (GP) equations is obtained for the special case ξ2/ξ1=1/2 and K=3/2. Furthermore, applying a double-parabola approximation (DPA) to the energy density featured in GP theory allows us to define a DPA model, which is much simpler to handle than GP theory but nevertheless still captures the main physics. In particular, a compact analytic expression for the interfacial tension is derived that is useful for all ξ1,ξ2, and K. An application to wetting phenomena is presented for condensates adsorbed at an optical wall. The wetting phase boundary obtained within the DPA model nearly coincides with the exact one in GP theory. |
format | Article |
fullrecord | <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_499088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_499088</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_4990883</originalsourceid><addsrcrecordid>eNqVyjEOgjAUANAOmkiUO3RzME0qhUpXDMZdd9KUT1LFlvR_DMd38QA6veWtWFaU2ghjCr1hOeJDSnmsjNFKZ6y5kSXvuA8EabDO25FPKU6QyAPyOPAmIojWByTwQbgYeghoCfjLLzQnwB1bD3ZEyL9u2f7S3s9X8ZxHmN8Quh4n66A7Fqqs9Kk2XWmMrGv1zzz8NjtaSH0AxXhJYQ</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Static interfacial properties of Bose-Einstein-condensate mixtures</title><source>Lirias (KU Leuven Association)</source><source>American Physical Society Journals</source><creator>Indekeu, Joseph ; Lin, Chang-You ; Nguyen Van Thu ; Van Schaeybroeck, Bert ; Tran Huu Phat</creator><creatorcontrib>Indekeu, Joseph ; Lin, Chang-You ; Nguyen Van Thu ; Van Schaeybroeck, Bert ; Tran Huu Phat</creatorcontrib><description>© 2015 American Physical Society. The interfacial profiles and interfacial tensions of phase-separated binary mixtures of Bose-Einstein condensates are studied theoretically. The two condensates are characterized by their respective healing lengths ξ1 and ξ2 and by the interspecies repulsive interaction K. An exact solution to the Gross-Pitaevskii (GP) equations is obtained for the special case ξ2/ξ1=1/2 and K=3/2. Furthermore, applying a double-parabola approximation (DPA) to the energy density featured in GP theory allows us to define a DPA model, which is much simpler to handle than GP theory but nevertheless still captures the main physics. In particular, a compact analytic expression for the interfacial tension is derived that is useful for all ξ1,ξ2, and K. An application to wetting phenomena is presented for condensates adsorbed at an optical wall. The wetting phase boundary obtained within the DPA model nearly coincides with the exact one in GP theory.</description><identifier>ISSN: 2469-9926</identifier><language>eng</language><publisher>COLLEGE PK: American Physical Society</publisher><ispartof>Physical Review A, 2015, Vol.91 (3), p.033615-033615</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,315,776,780,4010,27837</link.rule.ids></links><search><creatorcontrib>Indekeu, Joseph</creatorcontrib><creatorcontrib>Lin, Chang-You</creatorcontrib><creatorcontrib>Nguyen Van Thu</creatorcontrib><creatorcontrib>Van Schaeybroeck, Bert</creatorcontrib><creatorcontrib>Tran Huu Phat</creatorcontrib><title>Static interfacial properties of Bose-Einstein-condensate mixtures</title><title>Physical Review A</title><description>© 2015 American Physical Society. The interfacial profiles and interfacial tensions of phase-separated binary mixtures of Bose-Einstein condensates are studied theoretically. The two condensates are characterized by their respective healing lengths ξ1 and ξ2 and by the interspecies repulsive interaction K. An exact solution to the Gross-Pitaevskii (GP) equations is obtained for the special case ξ2/ξ1=1/2 and K=3/2. Furthermore, applying a double-parabola approximation (DPA) to the energy density featured in GP theory allows us to define a DPA model, which is much simpler to handle than GP theory but nevertheless still captures the main physics. In particular, a compact analytic expression for the interfacial tension is derived that is useful for all ξ1,ξ2, and K. An application to wetting phenomena is presented for condensates adsorbed at an optical wall. The wetting phase boundary obtained within the DPA model nearly coincides with the exact one in GP theory.</description><issn>2469-9926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVyjEOgjAUANAOmkiUO3RzME0qhUpXDMZdd9KUT1LFlvR_DMd38QA6veWtWFaU2ghjCr1hOeJDSnmsjNFKZ6y5kSXvuA8EabDO25FPKU6QyAPyOPAmIojWByTwQbgYeghoCfjLLzQnwB1bD3ZEyL9u2f7S3s9X8ZxHmN8Quh4n66A7Fqqs9Kk2XWmMrGv1zzz8NjtaSH0AxXhJYQ</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Indekeu, Joseph</creator><creator>Lin, Chang-You</creator><creator>Nguyen Van Thu</creator><creator>Van Schaeybroeck, Bert</creator><creator>Tran Huu Phat</creator><general>American Physical Society</general><scope>FZOIL</scope></search><sort><creationdate>2015</creationdate><title>Static interfacial properties of Bose-Einstein-condensate mixtures</title><author>Indekeu, Joseph ; Lin, Chang-You ; Nguyen Van Thu ; Van Schaeybroeck, Bert ; Tran Huu Phat</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_4990883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Indekeu, Joseph</creatorcontrib><creatorcontrib>Lin, Chang-You</creatorcontrib><creatorcontrib>Nguyen Van Thu</creatorcontrib><creatorcontrib>Van Schaeybroeck, Bert</creatorcontrib><creatorcontrib>Tran Huu Phat</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Physical Review A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Indekeu, Joseph</au><au>Lin, Chang-You</au><au>Nguyen Van Thu</au><au>Van Schaeybroeck, Bert</au><au>Tran Huu Phat</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Static interfacial properties of Bose-Einstein-condensate mixtures</atitle><jtitle>Physical Review A</jtitle><date>2015</date><risdate>2015</risdate><volume>91</volume><issue>3</issue><spage>033615</spage><epage>033615</epage><pages>033615-033615</pages><issn>2469-9926</issn><abstract>© 2015 American Physical Society. The interfacial profiles and interfacial tensions of phase-separated binary mixtures of Bose-Einstein condensates are studied theoretically. The two condensates are characterized by their respective healing lengths ξ1 and ξ2 and by the interspecies repulsive interaction K. An exact solution to the Gross-Pitaevskii (GP) equations is obtained for the special case ξ2/ξ1=1/2 and K=3/2. Furthermore, applying a double-parabola approximation (DPA) to the energy density featured in GP theory allows us to define a DPA model, which is much simpler to handle than GP theory but nevertheless still captures the main physics. In particular, a compact analytic expression for the interfacial tension is derived that is useful for all ξ1,ξ2, and K. An application to wetting phenomena is presented for condensates adsorbed at an optical wall. The wetting phase boundary obtained within the DPA model nearly coincides with the exact one in GP theory.</abstract><cop>COLLEGE PK</cop><pub>American Physical Society</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9926 |
ispartof | Physical Review A, 2015, Vol.91 (3), p.033615-033615 |
issn | 2469-9926 |
language | eng |
recordid | cdi_kuleuven_dspace_123456789_499088 |
source | Lirias (KU Leuven Association); American Physical Society Journals |
title | Static interfacial properties of Bose-Einstein-condensate mixtures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T19%3A40%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Static%20interfacial%20properties%20of%20Bose-Einstein-condensate%20mixtures&rft.jtitle=Physical%20Review%20A&rft.au=Indekeu,%20Joseph&rft.date=2015&rft.volume=91&rft.issue=3&rft.spage=033615&rft.epage=033615&rft.pages=033615-033615&rft.issn=2469-9926&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_499088%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |