Repairing inconsistent taxonomies using MAP inference and rules of thumb

Several authors have developed relation extraction methods for automatically learning or refining taxonomies from large text corpora such as the Web. However, without appropriate post-processing, such taxonomies are often inconsistent (e.g. they contain cycles). A standard approach to repairing such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Merhej, Elie, Schockaert, Steven, De Cock, Martine, Blondeel, Marjon, Alfarone, Daniele, Davis, Jesse
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue November
container_start_page 31
container_title
container_volume 2014-November
creator Merhej, Elie
Schockaert, Steven
De Cock, Martine
Blondeel, Marjon
Alfarone, Daniele
Davis, Jesse
description Several authors have developed relation extraction methods for automatically learning or refining taxonomies from large text corpora such as the Web. However, without appropriate post-processing, such taxonomies are often inconsistent (e.g. they contain cycles). A standard approach to repairing such inconsistencies is to identify a minimally consistent subset of the extracted facts. For example, we could aim to minimize the sum of the confidence weights of the facts that are removed for restoring consistency. In this paper, we present MAP inference as a base method for this approach, and analyze how it can be improved by taking into account dependencies between the extracted facts. These dependencies correspond to rules of thumb such as "if a given fact is wrong then all facts that have been extracted from the same sentence are also likely to be wrong", which we encode in Markov logic. We present experimental results to demonstrate the potential of this idea.
format Conference Proceeding
fullrecord <record><control><sourceid>kuleuven_FZOIL</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_465024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_465024</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_4650243</originalsourceid><addsrcrecordid>eNqNzEELgjAYxvFBBIX5HXbrEMHm5tRjROEliOg-lr7WSjdxW_jxM-gDdHoO_x_PDMVFllOeEkYFEXyBYueehBBKWSYoW6LyAr3SgzZ3rE1ljdPOg_HYq9Ea22lwOLhvPe3Ok2hgAFMBVqbGQ2inahvsH6G7rdC8Ua2D-LcRWh8P1325fU0svMHI2vWqAkkTxlOR5YXkIiUJZxHa_CelHz37__cDWbtLrA</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Repairing inconsistent taxonomies using MAP inference and rules of thumb</title><source>Lirias (KU Leuven Association)</source><creator>Merhej, Elie ; Schockaert, Steven ; De Cock, Martine ; Blondeel, Marjon ; Alfarone, Daniele ; Davis, Jesse</creator><contributor>Kotoulas, Spyros ; Huang, Zhisheng ; Zeng, Yi</contributor><creatorcontrib>Merhej, Elie ; Schockaert, Steven ; De Cock, Martine ; Blondeel, Marjon ; Alfarone, Daniele ; Davis, Jesse ; Kotoulas, Spyros ; Huang, Zhisheng ; Zeng, Yi</creatorcontrib><description>Several authors have developed relation extraction methods for automatically learning or refining taxonomies from large text corpora such as the Web. However, without appropriate post-processing, such taxonomies are often inconsistent (e.g. they contain cycles). A standard approach to repairing such inconsistencies is to identify a minimally consistent subset of the extracted facts. For example, we could aim to minimize the sum of the confidence weights of the facts that are removed for restoring consistency. In this paper, we present MAP inference as a base method for this approach, and analyze how it can be improved by taking into account dependencies between the extracted facts. These dependencies correspond to rules of thumb such as "if a given fact is wrong then all facts that have been extracted from the same sentence are also likely to be wrong", which we encode in Markov logic. We present experimental results to demonstrate the potential of this idea.</description><identifier>ISBN: 9781450316064</identifier><identifier>ISBN: 1450316069</identifier><language>eng</language><publisher>ACM</publisher><ispartof>Proceedings of Web-KR'14 Workshop, 2014, Vol.2014-November (November), p.31-36</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,315,780,4050,4051,27860</link.rule.ids><linktorsrc>$$Uhttps://lirias.kuleuven.be/handle/123456789/465024$$EView_record_in_KU_Leuven_Association$$FView_record_in_$$GKU_Leuven_Association$$Hfree_for_read</linktorsrc></links><search><contributor>Kotoulas, Spyros</contributor><contributor>Huang, Zhisheng</contributor><contributor>Zeng, Yi</contributor><creatorcontrib>Merhej, Elie</creatorcontrib><creatorcontrib>Schockaert, Steven</creatorcontrib><creatorcontrib>De Cock, Martine</creatorcontrib><creatorcontrib>Blondeel, Marjon</creatorcontrib><creatorcontrib>Alfarone, Daniele</creatorcontrib><creatorcontrib>Davis, Jesse</creatorcontrib><title>Repairing inconsistent taxonomies using MAP inference and rules of thumb</title><title>Proceedings of Web-KR'14 Workshop</title><description>Several authors have developed relation extraction methods for automatically learning or refining taxonomies from large text corpora such as the Web. However, without appropriate post-processing, such taxonomies are often inconsistent (e.g. they contain cycles). A standard approach to repairing such inconsistencies is to identify a minimally consistent subset of the extracted facts. For example, we could aim to minimize the sum of the confidence weights of the facts that are removed for restoring consistency. In this paper, we present MAP inference as a base method for this approach, and analyze how it can be improved by taking into account dependencies between the extracted facts. These dependencies correspond to rules of thumb such as "if a given fact is wrong then all facts that have been extracted from the same sentence are also likely to be wrong", which we encode in Markov logic. We present experimental results to demonstrate the potential of this idea.</description><isbn>9781450316064</isbn><isbn>1450316069</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2014</creationdate><recordtype>conference_proceeding</recordtype><sourceid>FZOIL</sourceid><recordid>eNqNzEELgjAYxvFBBIX5HXbrEMHm5tRjROEliOg-lr7WSjdxW_jxM-gDdHoO_x_PDMVFllOeEkYFEXyBYueehBBKWSYoW6LyAr3SgzZ3rE1ljdPOg_HYq9Ea22lwOLhvPe3Ok2hgAFMBVqbGQ2inahvsH6G7rdC8Ua2D-LcRWh8P1325fU0svMHI2vWqAkkTxlOR5YXkIiUJZxHa_CelHz37__cDWbtLrA</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Merhej, Elie</creator><creator>Schockaert, Steven</creator><creator>De Cock, Martine</creator><creator>Blondeel, Marjon</creator><creator>Alfarone, Daniele</creator><creator>Davis, Jesse</creator><general>ACM</general><scope>FZOIL</scope></search><sort><creationdate>2014</creationdate><title>Repairing inconsistent taxonomies using MAP inference and rules of thumb</title><author>Merhej, Elie ; Schockaert, Steven ; De Cock, Martine ; Blondeel, Marjon ; Alfarone, Daniele ; Davis, Jesse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_4650243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Merhej, Elie</creatorcontrib><creatorcontrib>Schockaert, Steven</creatorcontrib><creatorcontrib>De Cock, Martine</creatorcontrib><creatorcontrib>Blondeel, Marjon</creatorcontrib><creatorcontrib>Alfarone, Daniele</creatorcontrib><creatorcontrib>Davis, Jesse</creatorcontrib><collection>Lirias (KU Leuven Association)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Merhej, Elie</au><au>Schockaert, Steven</au><au>De Cock, Martine</au><au>Blondeel, Marjon</au><au>Alfarone, Daniele</au><au>Davis, Jesse</au><au>Kotoulas, Spyros</au><au>Huang, Zhisheng</au><au>Zeng, Yi</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Repairing inconsistent taxonomies using MAP inference and rules of thumb</atitle><btitle>Proceedings of Web-KR'14 Workshop</btitle><date>2014</date><risdate>2014</risdate><volume>2014-November</volume><issue>November</issue><spage>31</spage><epage>36</epage><pages>31-36</pages><isbn>9781450316064</isbn><isbn>1450316069</isbn><abstract>Several authors have developed relation extraction methods for automatically learning or refining taxonomies from large text corpora such as the Web. However, without appropriate post-processing, such taxonomies are often inconsistent (e.g. they contain cycles). A standard approach to repairing such inconsistencies is to identify a minimally consistent subset of the extracted facts. For example, we could aim to minimize the sum of the confidence weights of the facts that are removed for restoring consistency. In this paper, we present MAP inference as a base method for this approach, and analyze how it can be improved by taking into account dependencies between the extracted facts. These dependencies correspond to rules of thumb such as "if a given fact is wrong then all facts that have been extracted from the same sentence are also likely to be wrong", which we encode in Markov logic. We present experimental results to demonstrate the potential of this idea.</abstract><pub>ACM</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781450316064
ispartof Proceedings of Web-KR'14 Workshop, 2014, Vol.2014-November (November), p.31-36
issn
language eng
recordid cdi_kuleuven_dspace_123456789_465024
source Lirias (KU Leuven Association)
title Repairing inconsistent taxonomies using MAP inference and rules of thumb
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A57%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven_FZOIL&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Repairing%20inconsistent%20taxonomies%20using%20MAP%20inference%20and%20rules%20of%20thumb&rft.btitle=Proceedings%20of%20Web-KR'14%20Workshop&rft.au=Merhej,%20Elie&rft.date=2014&rft.volume=2014-November&rft.issue=November&rft.spage=31&rft.epage=36&rft.pages=31-36&rft.isbn=9781450316064&rft.isbn_list=1450316069&rft_id=info:doi/&rft_dat=%3Ckuleuven_FZOIL%3E123456789_465024%3C/kuleuven_FZOIL%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true