Approaches for drug delivery with intracortical probes
Abstract Intracortical microprobes allow the precise monitoring of electrical and chemical signaling and are widely used in neuroscience. Microelectromechanical system (MEMS) technologies have greatly enhanced the integration of multifunctional probes by facilitating the combination of multiple reco...
Gespeichert in:
Veröffentlicht in: | Biomedizinische Technik 2014-08, Vol.59 (4), p.291-303 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 303 |
---|---|
container_issue | 4 |
container_start_page | 291 |
container_title | Biomedizinische Technik |
container_volume | 59 |
creator | Spieth, Sven Schumacher, Axel Trenkle, Fabian Brett, Olivia Seidl, Karsten Herwik, Stanislav Kisban, Sebastian Ruther, Patrick Aarts, Arno A.A Neves, Hercules P Rich, P. Dylan Theobald, David E Holtzman, Tahl Dalley, Jeffrey W Verhoef, Bram-Ernst Janssen, Peter Zengerle, Roland |
description | Abstract Intracortical microprobes allow the precise monitoring of electrical and chemical signaling and are widely used in neuroscience. Microelectromechanical system (MEMS) technologies have greatly enhanced the integration of multifunctional probes by facilitating the combination of multiple recording electrodes and drug delivery channels in a single probe. Depending on the neuroscientific application, various assembly strategies are required in addition to the microprobe fabrication itself. This paper summarizes recent advances in the fabrication and assembly of micromachined silicon probes for drug delivery achieved within the EU-funded research project NeuroProbes. The described fabrication process combines a two-wafer silicon bonding process with deep reactive ion etching, wafer grinding, and thin film patterning and offers a maximum in design flexibility. By applying this process, three general comb-like microprobe designs featuring up to four 8-mm-long shafts, cross sections from 150×200 to 250×250 µm², and different electrode and fluidic channel configurations are realized. Furthermore, we discuss the development and application of different probe assemblies for acute, semichronic, and chronic applications, including comb and array assemblies, floating microprobe arrays, as well as the complete drug delivery system NeuroMedicator for small animal research. |
format | Article |
fullrecord | <record><control><sourceid>kuleuven_FZOIL</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_440471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_440471</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_4404713</originalsourceid><addsrcrecordid>eNqVyjsOwiAYAGAGTayPO7A5mCZUoI_RGI0HcCcIfy1KWsKj6u118AA6fcs3QRkhBc05r_kMzUO4EcI4b0iGyp1zfpCqg4DbwWPt0xVrsGYE_8IPEzts-uilGnw0Slr82RcISzRtpQ2w-rpA6-PhvD_l92QhjdALHZxUIIotZbys6kYwRlhV0H_m5rcp4jPSNxZ9Q84</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Approaches for drug delivery with intracortical probes</title><source>Lirias (KU Leuven Association)</source><creator>Spieth, Sven ; Schumacher, Axel ; Trenkle, Fabian ; Brett, Olivia ; Seidl, Karsten ; Herwik, Stanislav ; Kisban, Sebastian ; Ruther, Patrick ; Aarts, Arno A.A ; Neves, Hercules P ; Rich, P. Dylan ; Theobald, David E ; Holtzman, Tahl ; Dalley, Jeffrey W ; Verhoef, Bram-Ernst ; Janssen, Peter ; Zengerle, Roland</creator><creatorcontrib>Spieth, Sven ; Schumacher, Axel ; Trenkle, Fabian ; Brett, Olivia ; Seidl, Karsten ; Herwik, Stanislav ; Kisban, Sebastian ; Ruther, Patrick ; Aarts, Arno A.A ; Neves, Hercules P ; Rich, P. Dylan ; Theobald, David E ; Holtzman, Tahl ; Dalley, Jeffrey W ; Verhoef, Bram-Ernst ; Janssen, Peter ; Zengerle, Roland</creatorcontrib><description>Abstract Intracortical microprobes allow the precise monitoring of electrical and chemical signaling and are widely used in neuroscience. Microelectromechanical system (MEMS) technologies have greatly enhanced the integration of multifunctional probes by facilitating the combination of multiple recording electrodes and drug delivery channels in a single probe. Depending on the neuroscientific application, various assembly strategies are required in addition to the microprobe fabrication itself. This paper summarizes recent advances in the fabrication and assembly of micromachined silicon probes for drug delivery achieved within the EU-funded research project NeuroProbes. The described fabrication process combines a two-wafer silicon bonding process with deep reactive ion etching, wafer grinding, and thin film patterning and offers a maximum in design flexibility. By applying this process, three general comb-like microprobe designs featuring up to four 8-mm-long shafts, cross sections from 150×200 to 250×250 µm², and different electrode and fluidic channel configurations are realized. Furthermore, we discuss the development and application of different probe assemblies for acute, semichronic, and chronic applications, including comb and array assemblies, floating microprobe arrays, as well as the complete drug delivery system NeuroMedicator for small animal research.</description><identifier>ISSN: 0013-5585</identifier><language>eng</language><publisher>Fachverlag Schiele & Schön</publisher><ispartof>Biomedizinische Technik, 2014-08, Vol.59 (4), p.291-303</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,776,27837</link.rule.ids><linktorsrc>$$Uhttps://lirias.kuleuven.be/handle/123456789/440471$$EView_record_in_KU_Leuven_Association$$FView_record_in_$$GKU_Leuven_Association$$Hfree_for_read</linktorsrc></links><search><creatorcontrib>Spieth, Sven</creatorcontrib><creatorcontrib>Schumacher, Axel</creatorcontrib><creatorcontrib>Trenkle, Fabian</creatorcontrib><creatorcontrib>Brett, Olivia</creatorcontrib><creatorcontrib>Seidl, Karsten</creatorcontrib><creatorcontrib>Herwik, Stanislav</creatorcontrib><creatorcontrib>Kisban, Sebastian</creatorcontrib><creatorcontrib>Ruther, Patrick</creatorcontrib><creatorcontrib>Aarts, Arno A.A</creatorcontrib><creatorcontrib>Neves, Hercules P</creatorcontrib><creatorcontrib>Rich, P. Dylan</creatorcontrib><creatorcontrib>Theobald, David E</creatorcontrib><creatorcontrib>Holtzman, Tahl</creatorcontrib><creatorcontrib>Dalley, Jeffrey W</creatorcontrib><creatorcontrib>Verhoef, Bram-Ernst</creatorcontrib><creatorcontrib>Janssen, Peter</creatorcontrib><creatorcontrib>Zengerle, Roland</creatorcontrib><title>Approaches for drug delivery with intracortical probes</title><title>Biomedizinische Technik</title><description>Abstract Intracortical microprobes allow the precise monitoring of electrical and chemical signaling and are widely used in neuroscience. Microelectromechanical system (MEMS) technologies have greatly enhanced the integration of multifunctional probes by facilitating the combination of multiple recording electrodes and drug delivery channels in a single probe. Depending on the neuroscientific application, various assembly strategies are required in addition to the microprobe fabrication itself. This paper summarizes recent advances in the fabrication and assembly of micromachined silicon probes for drug delivery achieved within the EU-funded research project NeuroProbes. The described fabrication process combines a two-wafer silicon bonding process with deep reactive ion etching, wafer grinding, and thin film patterning and offers a maximum in design flexibility. By applying this process, three general comb-like microprobe designs featuring up to four 8-mm-long shafts, cross sections from 150×200 to 250×250 µm², and different electrode and fluidic channel configurations are realized. Furthermore, we discuss the development and application of different probe assemblies for acute, semichronic, and chronic applications, including comb and array assemblies, floating microprobe arrays, as well as the complete drug delivery system NeuroMedicator for small animal research.</description><issn>0013-5585</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVyjsOwiAYAGAGTayPO7A5mCZUoI_RGI0HcCcIfy1KWsKj6u118AA6fcs3QRkhBc05r_kMzUO4EcI4b0iGyp1zfpCqg4DbwWPt0xVrsGYE_8IPEzts-uilGnw0Slr82RcISzRtpQ2w-rpA6-PhvD_l92QhjdALHZxUIIotZbys6kYwRlhV0H_m5rcp4jPSNxZ9Q84</recordid><startdate>201408</startdate><enddate>201408</enddate><creator>Spieth, Sven</creator><creator>Schumacher, Axel</creator><creator>Trenkle, Fabian</creator><creator>Brett, Olivia</creator><creator>Seidl, Karsten</creator><creator>Herwik, Stanislav</creator><creator>Kisban, Sebastian</creator><creator>Ruther, Patrick</creator><creator>Aarts, Arno A.A</creator><creator>Neves, Hercules P</creator><creator>Rich, P. Dylan</creator><creator>Theobald, David E</creator><creator>Holtzman, Tahl</creator><creator>Dalley, Jeffrey W</creator><creator>Verhoef, Bram-Ernst</creator><creator>Janssen, Peter</creator><creator>Zengerle, Roland</creator><general>Fachverlag Schiele & Schön</general><scope>FZOIL</scope></search><sort><creationdate>201408</creationdate><title>Approaches for drug delivery with intracortical probes</title><author>Spieth, Sven ; Schumacher, Axel ; Trenkle, Fabian ; Brett, Olivia ; Seidl, Karsten ; Herwik, Stanislav ; Kisban, Sebastian ; Ruther, Patrick ; Aarts, Arno A.A ; Neves, Hercules P ; Rich, P. Dylan ; Theobald, David E ; Holtzman, Tahl ; Dalley, Jeffrey W ; Verhoef, Bram-Ernst ; Janssen, Peter ; Zengerle, Roland</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_4404713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spieth, Sven</creatorcontrib><creatorcontrib>Schumacher, Axel</creatorcontrib><creatorcontrib>Trenkle, Fabian</creatorcontrib><creatorcontrib>Brett, Olivia</creatorcontrib><creatorcontrib>Seidl, Karsten</creatorcontrib><creatorcontrib>Herwik, Stanislav</creatorcontrib><creatorcontrib>Kisban, Sebastian</creatorcontrib><creatorcontrib>Ruther, Patrick</creatorcontrib><creatorcontrib>Aarts, Arno A.A</creatorcontrib><creatorcontrib>Neves, Hercules P</creatorcontrib><creatorcontrib>Rich, P. Dylan</creatorcontrib><creatorcontrib>Theobald, David E</creatorcontrib><creatorcontrib>Holtzman, Tahl</creatorcontrib><creatorcontrib>Dalley, Jeffrey W</creatorcontrib><creatorcontrib>Verhoef, Bram-Ernst</creatorcontrib><creatorcontrib>Janssen, Peter</creatorcontrib><creatorcontrib>Zengerle, Roland</creatorcontrib><collection>Lirias (KU Leuven Association)</collection><jtitle>Biomedizinische Technik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Spieth, Sven</au><au>Schumacher, Axel</au><au>Trenkle, Fabian</au><au>Brett, Olivia</au><au>Seidl, Karsten</au><au>Herwik, Stanislav</au><au>Kisban, Sebastian</au><au>Ruther, Patrick</au><au>Aarts, Arno A.A</au><au>Neves, Hercules P</au><au>Rich, P. Dylan</au><au>Theobald, David E</au><au>Holtzman, Tahl</au><au>Dalley, Jeffrey W</au><au>Verhoef, Bram-Ernst</au><au>Janssen, Peter</au><au>Zengerle, Roland</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approaches for drug delivery with intracortical probes</atitle><jtitle>Biomedizinische Technik</jtitle><date>2014-08</date><risdate>2014</risdate><volume>59</volume><issue>4</issue><spage>291</spage><epage>303</epage><pages>291-303</pages><issn>0013-5585</issn><abstract>Abstract Intracortical microprobes allow the precise monitoring of electrical and chemical signaling and are widely used in neuroscience. Microelectromechanical system (MEMS) technologies have greatly enhanced the integration of multifunctional probes by facilitating the combination of multiple recording electrodes and drug delivery channels in a single probe. Depending on the neuroscientific application, various assembly strategies are required in addition to the microprobe fabrication itself. This paper summarizes recent advances in the fabrication and assembly of micromachined silicon probes for drug delivery achieved within the EU-funded research project NeuroProbes. The described fabrication process combines a two-wafer silicon bonding process with deep reactive ion etching, wafer grinding, and thin film patterning and offers a maximum in design flexibility. By applying this process, three general comb-like microprobe designs featuring up to four 8-mm-long shafts, cross sections from 150×200 to 250×250 µm², and different electrode and fluidic channel configurations are realized. Furthermore, we discuss the development and application of different probe assemblies for acute, semichronic, and chronic applications, including comb and array assemblies, floating microprobe arrays, as well as the complete drug delivery system NeuroMedicator for small animal research.</abstract><pub>Fachverlag Schiele & Schön</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0013-5585 |
ispartof | Biomedizinische Technik, 2014-08, Vol.59 (4), p.291-303 |
issn | 0013-5585 |
language | eng |
recordid | cdi_kuleuven_dspace_123456789_440471 |
source | Lirias (KU Leuven Association) |
title | Approaches for drug delivery with intracortical probes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven_FZOIL&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approaches%20for%20drug%20delivery%20with%20intracortical%20probes&rft.jtitle=Biomedizinische%20Technik&rft.au=Spieth,%20Sven&rft.date=2014-08&rft.volume=59&rft.issue=4&rft.spage=291&rft.epage=303&rft.pages=291-303&rft.issn=0013-5585&rft_id=info:doi/&rft_dat=%3Ckuleuven_FZOIL%3E123456789_440471%3C/kuleuven_FZOIL%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |