Self-tuned kernel spectral clustering for large scale networks
We propose a parameter-free kernel spectral clustering model for large scale complex networks. The kernel spectral clustering (KSC) method works by creating a model on a subgraph of the complex network. The model requires a kernel function which can have parameters and the number of communities k ha...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Mall, Raghvendra Langone, Rocco Suykens, Johan |
description | We propose a parameter-free kernel spectral clustering model for large scale complex networks. The kernel spectral clustering (KSC) method works by creating a model on a subgraph of the complex network. The model requires a kernel function which can have parameters and the number of communities k has be detected in the large scale network. We exploit the structure of the projections in the eigenspace to automatically identify the number of clusters. We use the concept of entropy and balanced clusters for this purpose. We show the effectiveness of the proposed approach by comparing the cluster memberships w.r.t. several large scale community detection techniques like Louvain, Infomap and Bigclam methods. We conducted experiments on several synthetic networks of varying size and mixing parameter along with large scale real world experiments to show the efficiency of the proposed approach. © 2013 IEEE. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>kuleuven</sourceid><recordid>TN_cdi_kuleuven_dspace_123456789_415346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>123456789_415346</sourcerecordid><originalsourceid>FETCH-kuleuven_dspace_123456789_4153463</originalsourceid><addsrcrecordid>eNqVyjEOwiAUAFASNbHR3oHNwTQpBUpZXIzGXfeG0N9GS2jDB_X4Lh5Ap7e8Bcm1aphQWrNKc74kWVVzXTDZ6DXJER9lWXKmlJQsI4cruL6IyUNHRwgeHMUZbAzGUesSRgh3P9B-CtSZMABFaxxQD_E1hRG3ZNUbh5B_3ZDd-XQ7XooxOUhP8G2Hs7HQsooLWatGt4JJLmr-z9z_Ntv4jvwD2EhKJA</addsrcrecordid><sourcetype>Institutional Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Self-tuned kernel spectral clustering for large scale networks</title><source>Lirias (KU Leuven Association)</source><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mall, Raghvendra ; Langone, Rocco ; Suykens, Johan</creator><contributor>BaezaYates, R ; Wah, B ; Hu, X ; Lempel, R ; Ghani, R ; Nambiar, R ; Yang, Q ; Lin, T.Y ; Shahabi, C ; Raghavan, V ; Fox, G ; Smith, M ; Fan, W</contributor><creatorcontrib>Mall, Raghvendra ; Langone, Rocco ; Suykens, Johan ; BaezaYates, R ; Wah, B ; Hu, X ; Lempel, R ; Ghani, R ; Nambiar, R ; Yang, Q ; Lin, T.Y ; Shahabi, C ; Raghavan, V ; Fox, G ; Smith, M ; Fan, W</creatorcontrib><description>We propose a parameter-free kernel spectral clustering model for large scale complex networks. The kernel spectral clustering (KSC) method works by creating a model on a subgraph of the complex network. The model requires a kernel function which can have parameters and the number of communities k has be detected in the large scale network. We exploit the structure of the projections in the eigenspace to automatically identify the number of clusters. We use the concept of entropy and balanced clusters for this purpose. We show the effectiveness of the proposed approach by comparing the cluster memberships w.r.t. several large scale community detection techniques like Louvain, Infomap and Bigclam methods. We conducted experiments on several synthetic networks of varying size and mixing parameter along with large scale real world experiments to show the efficiency of the proposed approach. © 2013 IEEE.</description><identifier>ISSN: 2639-1589</identifier><identifier>ISBN: 9781479912933</identifier><identifier>ISBN: 147991293X</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>Proc. of the IEEE International Conference on Big Data, 2013, p.1-9</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,315,780,784,789,790,4050,4051,27860</link.rule.ids></links><search><contributor>BaezaYates, R</contributor><contributor>Wah, B</contributor><contributor>Hu, X</contributor><contributor>Lempel, R</contributor><contributor>Ghani, R</contributor><contributor>Nambiar, R</contributor><contributor>Yang, Q</contributor><contributor>Lin, T.Y</contributor><contributor>Shahabi, C</contributor><contributor>Raghavan, V</contributor><contributor>Fox, G</contributor><contributor>Smith, M</contributor><contributor>Fan, W</contributor><creatorcontrib>Mall, Raghvendra</creatorcontrib><creatorcontrib>Langone, Rocco</creatorcontrib><creatorcontrib>Suykens, Johan</creatorcontrib><title>Self-tuned kernel spectral clustering for large scale networks</title><title>Proc. of the IEEE International Conference on Big Data</title><description>We propose a parameter-free kernel spectral clustering model for large scale complex networks. The kernel spectral clustering (KSC) method works by creating a model on a subgraph of the complex network. The model requires a kernel function which can have parameters and the number of communities k has be detected in the large scale network. We exploit the structure of the projections in the eigenspace to automatically identify the number of clusters. We use the concept of entropy and balanced clusters for this purpose. We show the effectiveness of the proposed approach by comparing the cluster memberships w.r.t. several large scale community detection techniques like Louvain, Infomap and Bigclam methods. We conducted experiments on several synthetic networks of varying size and mixing parameter along with large scale real world experiments to show the efficiency of the proposed approach. © 2013 IEEE.</description><issn>2639-1589</issn><isbn>9781479912933</isbn><isbn>147991293X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>FZOIL</sourceid><recordid>eNqVyjEOwiAUAFASNbHR3oHNwTQpBUpZXIzGXfeG0N9GS2jDB_X4Lh5Ap7e8Bcm1aphQWrNKc74kWVVzXTDZ6DXJER9lWXKmlJQsI4cruL6IyUNHRwgeHMUZbAzGUesSRgh3P9B-CtSZMABFaxxQD_E1hRG3ZNUbh5B_3ZDd-XQ7XooxOUhP8G2Hs7HQsooLWatGt4JJLmr-z9z_Ntv4jvwD2EhKJA</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Mall, Raghvendra</creator><creator>Langone, Rocco</creator><creator>Suykens, Johan</creator><general>IEEE</general><scope>FZOIL</scope></search><sort><creationdate>2013</creationdate><title>Self-tuned kernel spectral clustering for large scale networks</title><author>Mall, Raghvendra ; Langone, Rocco ; Suykens, Johan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-kuleuven_dspace_123456789_4153463</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Mall, Raghvendra</creatorcontrib><creatorcontrib>Langone, Rocco</creatorcontrib><creatorcontrib>Suykens, Johan</creatorcontrib><collection>Lirias (KU Leuven Association)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mall, Raghvendra</au><au>Langone, Rocco</au><au>Suykens, Johan</au><au>BaezaYates, R</au><au>Wah, B</au><au>Hu, X</au><au>Lempel, R</au><au>Ghani, R</au><au>Nambiar, R</au><au>Yang, Q</au><au>Lin, T.Y</au><au>Shahabi, C</au><au>Raghavan, V</au><au>Fox, G</au><au>Smith, M</au><au>Fan, W</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Self-tuned kernel spectral clustering for large scale networks</atitle><btitle>Proc. of the IEEE International Conference on Big Data</btitle><date>2013</date><risdate>2013</risdate><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>2639-1589</issn><isbn>9781479912933</isbn><isbn>147991293X</isbn><abstract>We propose a parameter-free kernel spectral clustering model for large scale complex networks. The kernel spectral clustering (KSC) method works by creating a model on a subgraph of the complex network. The model requires a kernel function which can have parameters and the number of communities k has be detected in the large scale network. We exploit the structure of the projections in the eigenspace to automatically identify the number of clusters. We use the concept of entropy and balanced clusters for this purpose. We show the effectiveness of the proposed approach by comparing the cluster memberships w.r.t. several large scale community detection techniques like Louvain, Infomap and Bigclam methods. We conducted experiments on several synthetic networks of varying size and mixing parameter along with large scale real world experiments to show the efficiency of the proposed approach. © 2013 IEEE.</abstract><pub>IEEE</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2639-1589 |
ispartof | Proc. of the IEEE International Conference on Big Data, 2013, p.1-9 |
issn | 2639-1589 |
language | eng |
recordid | cdi_kuleuven_dspace_123456789_415346 |
source | Lirias (KU Leuven Association); IEEE Electronic Library (IEL) Conference Proceedings |
title | Self-tuned kernel spectral clustering for large scale networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A21%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-kuleuven&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Self-tuned%20kernel%20spectral%20clustering%20for%20large%20scale%20networks&rft.btitle=Proc.%20of%20the%20IEEE%20International%20Conference%20on%20Big%20Data&rft.au=Mall,%20Raghvendra&rft.date=2013&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=2639-1589&rft.isbn=9781479912933&rft.isbn_list=147991293X&rft_id=info:doi/&rft_dat=%3Ckuleuven%3E123456789_415346%3C/kuleuven%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |